Carbonic anhydrase (CA) is one of the most vital enzymes in living cells. This study has been performed due to the significance of this metalloenzyme for life and the novelty of some CA families like ζ-CA to evaluate evolutionary processes and quality check their sequences. In this study, bioinformatics methods revealed the presence of ζ-CA in some eukaryotic and prokaryotic microorganisms. Notably, it has not been previously reported in prokaryotes. The coexistence of β- and ζ-CAs in some microorganisms is also a novel finding as well. Also, our analysis identified several CA proteins with 6-14 amino acid intervals between histidine and cysteine in the second highly conserved motif, which can be classified as the novel ζ-CA subfamily members that emerged under the Zn deficiency of aquatic ecosystems and selection pressure in these environments. There is also a possibility that the achieved results are rooted in the contamination of samples from the environmental microbiome genome with genomes of diatom species and the occurrence of errors was observed in the DNA sequencing outcomes. Combining of all results from evolutionary analysis to quality control of ζ-CA DNA sequences is the incentive motivation to explore more the hidden aspects of ζ-CAs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jobm.202300323DOI Listing

Publication Analysis

Top Keywords

evolutionary analysis
8
analysis quality
8
environmental microbiome
8
quality assessment
4
assessment ζ-carbonic
4
ζ-carbonic anhydrase
4
anhydrase sequences
4
sequences environmental
4
microbiome carbonic
4
carbonic anhydrase
4

Similar Publications

Introduction: Colorectal cancer (CRC) is the second most common cause of cancer-related deaths globally. The gut microbiota, along with adenomatous polyps (AP), has emerged as a plausible contributor to CRC progression. This study aimed to scrutinize the impact of the FadA antigen derived from Fusobacterium nucleatum on the expression levels of the ANXA2 ceRNA network and assess its relevance to CRC advancement.

View Article and Find Full Text PDF

Evidence for Multiple Independent Expansions of Fox Gene Families Within Flatworms.

J Mol Evol

January 2025

Faculty of Biology, Institute of Evolutionary Biology, University of Warsaw, Ul. Żwirki I Wigury 101, 02-089, Warsaw, Poland.

Expansion and losses of gene families are important drivers of molecular evolution. A recent survey of Fox genes in flatworms revealed that this superfamily of multifunctional transcription factors, present in all animals, underwent extensive losses and expansions during platyhelminth evolution. In this paper, I analyzed Fox gene complement in four additional species of platyhelminths, that represent early-branching lineages in the flatworm phylogeny: catenulids (Stenostomum brevipharyngium and Stenostomum leucops) and macrostomorphs (Macrostomum hystrix and Macrostomum cliftonense).

View Article and Find Full Text PDF

We identified seven distinct coronaviruses (CoVs) in bats from Brazil, classified into 229E-related (Alpha-CoV), Nobecovirus, Sarbecovirus, and Merbecovirus (Beta-CoV), including one closely related to MERS-like CoV with 82.8% genome coverage. To accomplish this, we screened 423 oral and rectal swabs from 16 different bat species using molecular assays, RNA sequencing, and evolutionary analysis.

View Article and Find Full Text PDF

Identifying populations at highest risk from climate change is a critical component of conservation efforts. However, vulnerability assessments are usually applied at the species level, even though intraspecific variation in exposure, sensitivity and adaptive capacity play a crucial role in determining vulnerability. Genomic data can inform intraspecific vulnerability by identifying signatures of local adaptation that reflect population-level variation in sensitivity and adaptive capacity.

View Article and Find Full Text PDF

Chemical signals and social structures strengthen sexual isolation in Drosophila pseudoobscura.

Commun Biol

January 2025

Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.

Species that coexist in hybrid zones sexually isolate through reproductive character displacement, a mechanism that favours divergence between species. In Drosophila, behavioural and physiological traits discourage heterospecific mating between species. Recently, social network analysis revealed flies produce strain-specific and species-specific social structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!