Bacterial growth often alters the environment, which in turn can impact interspecies interactions among bacteria. Here, we used an in vitro batch system containing mucin beads to emulate the dynamic host environment and to study its impact on the interactions between two abundant and prevalent human gut bacteria, the primary fermenter Bacteroides thetaiotaomicron and the butyrate producer Roseburia intestinalis. By combining machine learning and flow cytometry, we found that the number of viable B. thetaiotaomicron cells decreases with glucose consumption due to acid production, while R. intestinalis survives post-glucose depletion by entering a slow growth mode. Both species attach to mucin beads, but only viable cell counts of B. thetaiotaomicron increase significantly. The number of viable co-culture cells varies significantly over time compared to those of monocultures. A combination of targeted metabolomics and RNA-seq showed that the slow growth mode of R. intestinalis represents a diauxic shift towards acetate and lactate consumption, whereas B. thetaiotaomicron survives glucose depletion and low pH by foraging on mucin sugars. In addition, most of the mucin monosaccharides we tested inhibited the growth of R. intestinalis but not B. thetaiotaomicron. We encoded these causal relationships in a kinetic model, which reproduced the observed dynamics. In summary, we explored how R. intestinalis and B. thetaiotaomicron respond to nutrient scarcity and how this affects their dynamics. We highlight the importance of understanding bacterial metabolic strategies to effectively modulate microbial dynamics in changing conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10579405 | PMC |
http://dx.doi.org/10.1038/s41396-023-01501-1 | DOI Listing |
Curr Atheroscler Rep
January 2025
Nantes Université, CHU Nantes, CNRS, Inserm, l'institut du thorax, F-44000, Nantes, France.
Purpose Of Review: While lipid-lowering therapies demonstrate efficacy, many patients still contend with significant residual risk of atherosclerotic cardiovascular diseases (ASCVD). The intestine plays a pivotal role in regulating circulating lipoproteins levels, thereby exerting influence on ASCVD pathogenesis. This review underscores recent genetic findings from the last six years that delineate new biological pathways and actors in the intestine which regulate lipid-related ASCVD risk.
View Article and Find Full Text PDFEur J Clin Invest
January 2025
Department of Cardiology, Bern University Hospital, Inselspital, Bern, Switzerland.
Background: The human microbiome is crucial in regulating intestinal and systemic functions. While its role in cardiovascular disease is better understood, the link between intestinal microbiota and valvular heart diseases (VHD) remains largely unexplored.
Methods: Peer-reviewed studies on human, animal or cell models analysing gut microbiota profiles published up to April 2024 were included.
Nutrients
January 2025
Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
Objective: TRE is an emerging approach in obesity treatment, yet there is limited data on how it influences gut microbiome composition in humans. Our objective was to characterize the gut microbiome of human participants before and after a TRE intervention. This is a secondary analysis of a previously published clinical trial examining the effects of time-restricted eating (TRE).
View Article and Find Full Text PDFNutrients
December 2024
Department of Pharmacology, Centro de investigación Biomédica (CIBM), University of Granada, 18071 Granada, Spain.
Irritable bowel syndrome is a common functional gastrointestinal disorder characterized by recurrent abdominal discomfort, bloating, cramping, flatulence, and changes in bowel movements. The pathophysiology of IBS involves a complex interaction between motor, sensory, microbiological, immunological, and psychological factors. Diversity, stability, and metabolic activity of the gut microbiota are frequently altered in IBS, thus leading to a situation of gut dysbiosis.
View Article and Find Full Text PDFNutrients
December 2024
Cryptobiotix, Technologiepark-Zwijnaarde 82, 9052 Gent, Belgium.
Background: The human gut microbiota develops in concordance with its host over a lifetime, resulting in age-related shifts in community structure and metabolic function. Little is known about whether these changes impact the community's response to microbiome-targeted therapeutics. Providing critical information on this subject, faecal microbiomes of subjects from six age groups, spanning from infancy to 70-year-old adults (n = six per age group) were harvested.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!