Suppressing the oxidation of active-Ir(III) in IrO catalysts is highly desirable to realize an efficient and durable oxygen evolution reaction in water electrolysis. Although charge replenishment from supports can be effective in preventing the oxidation of IrO catalysts, most supports have inherently limited charge transfer capability. Here, we demonstrate that an excess electron reservoir, which is a charged oxygen species, incorporated in antimony-doped tin oxide supports can effectively control the Ir oxidation states by boosting the charge donations to IrO catalysts. Both computational and experimental analyses reveal that the promoted charge transfer driven by excess electron reservoir is the key parameter for stabilizing the active-Ir(III) in IrO catalysts. When used in a polymer electrolyte membrane water electrolyzer, Ir catalyst on excess electron reservoir incorporated support exhibited 75 times higher mass activity than commercial nanoparticle-based catalysts and outstanding long-term stability for 250 h with a marginal degradation under a water-splitting current of 1 A cm. Moreover, Ir-specific power (74.8 kW g) indicates its remarkable potential for realizing gigawatt-scale H production for the first time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10480199PMC
http://dx.doi.org/10.1038/s41467-023-41102-2DOI Listing

Publication Analysis

Top Keywords

excess electron
16
electron reservoir
16
iro catalysts
16
water electrolysis
8
charge replenishment
8
active-iriii iro
8
charge transfer
8
catalysts
6
charge
5
efficient sustainable
4

Similar Publications

Oxygen reduction reaction kinetics of platinum-based catalysts under stress induction.

Chem Commun (Camb)

January 2025

Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China.

The ORR kinetic optimization for PtNi and PtPb catalysts is conferred by stress induction. First principles calculation shows the cleavage barrier reduction of the key intermediate *OOH to 28.48 and 0 kJ mol, respectively.

View Article and Find Full Text PDF

Highly Selective AIEgen-Based "Turn On" Fluorescent Imaging for Inflammation Detection.

Luminescence

January 2025

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China.

Hypochlorous acid (HClO) is released by immune cells in the immune system, and it helps the body fight off infections and inflammation by killing bacteria, viruses, and other pathogens. However, tissue damage or apoptosis may also be induced by excess HClO. On this basis, we designed the probe TPE-NS by choosing tetraphenylethylene (TPE) as the luminescent unit and dimethylthiocarbamoyl chloride as the recognition site.

View Article and Find Full Text PDF

Nitrogen Assimilation Plays a Role in Balancing the Chloroplastic Glutathione Redox Potential Under High Light Conditions.

Plant Cell Environ

January 2025

The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.

Nitrate reduction requires reducing equivalents produced by the photosynthetic electron transport chain. Therefore, it has been suggested that nitrate assimilation provides a sink for electrons under high light conditions. We tested this hypothesis by monitoring photosynthetic efficiency and the chloroplastic glutathione redox potential (chl-E) of plant lines with mutated glutamine synthetase 2 (GS2) and ferredoxin-dependent glutamate synthase 1 (GOGAT1).

View Article and Find Full Text PDF

Currently, lithium-ion batteries (LIBs) are at the forefront of energy storage technologies. Silicon-based anodes, with their high capacity and low cost, present a promising alternative to traditional graphite anodes in LIBs, offering the potential for substantial improvements in energy density. However, the significant volumetric changes that silicon-based anodes undergo during charge and discharge cycles can lead to structural degradation.

View Article and Find Full Text PDF

Synthesis and Reactivity of a Bipyridyl Tantalum Complex.

Inorg Chem

January 2025

Testing and Analysis Center, Hebei Normal University, Shijiazhuang 050024, China.

The bipyridyl tantalum complex (2,6-PrCHO)Ta(bipy) () is synthesized by the reaction of (2,6-PrCHO)TaCl () and 2,2'-bipyridine in the presence of excess potassium graphite (KC). Complex coordinates readily with pyridine and 4-(dimethylamino)pyridine (dmap) to form Lewis base adducts (2,6-PrCHO)Ta(bipy)(L) (L = py (), dmap ()), and it exhibits rich redox reactivity toward small molecules: (a) single electron transfer (SET) occurs upon exposure of to phenyl sulfide or selenide dimer, giving the open-shell, bipy-centered radical complexes (2,6-PrCHO)Ta(bipy)(PhE) (E = S (), Se ()). (b) Regioselective C-C σ-bond formation via radical coupling is observed in the SET reaction of and aldehydes, ketones, or imines to furnish insertion products -, namely, sterically more crowded benzophenone, acetophenone, 2,6-dichlorobenzaldehyde, and benzophenone imine couple with C6 or C6' of bipy in , respectively, whereas sterically less hindered benzaldehyde, cyclohexanone, and benzylideneaniline couple with C2 or C2' of bipy, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!