Dlk2 interacts with Syap1 to activate Akt signaling pathway during osteoclast formation.

Cell Death Dis

Department of Oral and Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, People's Republic of China.

Published: September 2023

AI Article Synopsis

  • Dlk2, a protein linked to the regulation of fat cell development, also plays a crucial role in bone health by influencing the formation of osteoclasts, which are cells that break down bone.
  • Deleting Dlk2 in osteoclasts leads to fewer of these cells being formed in lab settings and results in stronger bones in live mice.
  • The study found that Dlk2 interacts with another protein, Syap1, which affects important signaling pathways (Akt, ERK1/2, and p38) that control osteoclast activity, suggesting that targeting this pathway could help treat bone-related diseases.

Article Abstract

Excessive osteoclast formation and bone resorption are related to osteolytic diseases. Delta drosophila homolog-like 2 (Dlk2), a member of the epidermal growth factor (EGF)-like superfamily, reportedly regulates adipocyte differentiation, but its roles in bone homeostasis are unclear. In this study, we demonstrated that Dlk2 deletion in osteoclasts significantly inhibited osteoclast formation in vitro and contributed to a high-bone-mass phenotype in vivo. Importantly, Dlk2 was shown to interact with synapse-associated protein 1 (Syap1), which regulates Akt phosphorylation at Ser473. Dlk2 deletion inhibited Syap1-mediated activation of the Akt, ERK1/2 and p38 signaling cascades. Additionally, Dlk2 deficiency exhibits increased bone mass in ovariectomized mice. Our results reveal the important roles of the Dlk2-Syap1 signaling pathway in osteoclast differentiation and osteoclast-related bone disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10480461PMC
http://dx.doi.org/10.1038/s41419-023-06107-1DOI Listing

Publication Analysis

Top Keywords

osteoclast formation
12
signaling pathway
8
pathway osteoclast
8
dlk2 deletion
8
dlk2
6
dlk2 interacts
4
interacts syap1
4
syap1 activate
4
activate akt
4
akt signaling
4

Similar Publications

Long non-coding RNA fine-tunes bone homeostasis and repair by orchestrating cellular crosstalk and β-catenin-OPG/Jagged1 pathway.

Elife

December 2024

Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, United States.

The IncRNA was initially believed to be dispensable for physiology due to the lack of observable phenotypes in knockout (KO) mice. However, our study challenges this conclusion. We found that both KO and conditional KO mice in the osteoblast lineage exhibit significant osteoporosis.

View Article and Find Full Text PDF

Skeletal disorders pose significant challenges to health and quality of life, underscoring the critical need for innovative bone repair methods. Recent studies have spotlighted the promising role of extracellular vesicles (EVs) derived from bone marrow mesenchymal stem cells (BMSCs) in conjunction with biomimetic peptide (BP) WKYMVm (WK) for bone repair. This research leveraged a self-healing hydrogel as a carrier, effectively loading EVs and WK to enhance treatment efficacy.

View Article and Find Full Text PDF

Selective serotonin reuptake inhibitor correlates with decreased bone mineral density and impedes orthodontic tooth movement. The present study aimed to examine the effects of fluoxetine on osteoclast differentiation and function. Human peripheral blood mononuclear cells (hPBMCs) and murine RAW264.

View Article and Find Full Text PDF

[Research progress of novel bone turnover markers in osteoporosis].

Zhonghua Yu Fang Yi Xue Za Zhi

December 2024

Department of Laboratory Medicine, West China Second University Hospital, Sichuan University Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu610041, China.

Bones possess metabolic activity, with their homeostasis maintained by bone resorption and bone formation mediated by osteoclasts and osteoblasts. By measuring bone metabolism markers, the overall state of bone metabolism and dynamic changes in systemic bone tissue can be reflected. Traditional bone turnover markers, including alkaline phosphatase, bonespecific alkaline phosphatase, procollagen type 1 N-terminal propeptide, procollagen type 1 C-terminal propeptide, osteocalcin, c-terminal telopeptides of type 1 collagen(CTX) and its subtype β-CTX, n-terminal telopeptides of type 1 collagen, have been widely used in clinical practice but still have limitations in terms of stability, diagnostic reliability, and specific reflection of bone sites.

View Article and Find Full Text PDF

Characterisation of the influence of dietary fat and sugar on bone health utilising densitometry, micro-computed tomography and histomorphometry.

Bone

December 2024

Division of Clinical Anatomy, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University Tygerberg Campus, PO Box 241, Cape Town 8000, South Africa. Electronic address:

Obesogenic feeding can affect systemic metabolism and impact bone health and microarchitecture, but the findings of published studies often appear contradictory. This study aimed to compare the effects of a medium-fat/high-sugar (MF/HS) and a high-fat/high-fructose (HF/Fr) diet on the femora of weanling male Wistar rats, examining bone mineral content and density (BMC, BMD), cortical and cancellous bone microarchitecture and the cell populations within bone. Furthermore, we explored the correlations between circulating bone-targeting factors (in particular leptin, adiponectin and insulin) and bone parameters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!