Balancing Redox Homeostasis to Improve l-Cysteine Production in .

J Agric Food Chem

Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China.

Published: September 2023

l-Cysteine is a valuable sulfur-containing amino acid with applications across a wide range of fields. Recently, microbial fermentation has emerged as a method to produce l-cysteine. However, cellular redox stress from high levels of l-cysteine is a bottleneck for achieving efficient production. In this study, we aimed to facilitate l-cysteine biosynthesis by modulating cellular redox homeostasis through the introduction of the natural antioxidant astaxanthin in . To achieve this, we first introduced an exogenous astaxanthin synthesis module in . Then, an l-cysteine-dependent autonomous bifunctional genetic switch was developed to dynamically regulate the l-cysteine and astaxanthin biosynthesis pathway to maintain cellular redox homeostasis. This regulation system achieved high biosynthesis of astaxanthin, which significantly facilitated l-cysteine production. Finally, engineered strain Cg-10 produced 8.45 g/L l-cysteine and 95 mg/L astaxanthin in a 5 L bioreactor, both of which are the highest reported levels in .

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.3c03828DOI Listing

Publication Analysis

Top Keywords

redox homeostasis
12
cellular redox
12
l-cysteine
8
l-cysteine production
8
astaxanthin
5
balancing redox
4
homeostasis improve
4
improve l-cysteine
4
production l-cysteine
4
l-cysteine valuable
4

Similar Publications

Disruption of the mycobacterial redox homeostasis leads to irreversible stress induction and cell death. Hydroquinone scaffolds, as a new type of redox cycling anti-tuberculosis chemotypes, exhibit potent bactericidal activity against non-replicating, nutrient-deprived phenotypically drug-resistant bacteria. Evidences from microbiological, biochemical, and genetic studies indicate that the redox-driven mode of action relies on the reduction of quinones by type II NADH dehydrogenase (NDH2), generating reactive oxygen species (ROS) of bactericidal level.

View Article and Find Full Text PDF

To what extent sildenafil, a selective inhibitor of the type-5 phosphodiesterase modulates systemic redox status and cerebrovascular function during acute exposure to hypoxia remains unknown. To address this, 12 healthy males (aged 24 ± 3 y) participated in a randomized, placebo-controlled crossover study involving exposure to both normoxia and acute (60 min) hypoxia (Fi = 0.14), followed by oral administration of 50 mg sildenafil and placebo (double-blinded).

View Article and Find Full Text PDF

Background: Androgenic anabolic steroids (AASs) are synthetic drugs structurally related to testosterone, with the ability to bind to androgen receptors. Their uncontrolled use by professional and recreational sportspeople is a widespread problem. AAS abuse is correlated with severe damage to the cardiovascular system, including changes in homeostasis and coagulation disorders.

View Article and Find Full Text PDF

Ferroptosis: A New Pathway in the Interaction between Gut Microbiota and Multiple Sclerosis.

Front Biosci (Landmark Ed)

January 2025

The First College of Clinical Medical Science, China Three Gorges University, 443000 Yichang, Hubei, China.

Multiple sclerosis (MS) is a chronic autoimmune disorder marked by neuroinflammation, demyelination, and neuronal damage. Recent advancements highlight a novel interaction between iron-dependent cell death, known as ferroptosis, and gut microbiota, which may significantly influences the pathophysiology of MS. Ferroptosis, driven by lipid peroxidation and tightly linked to iron metabolism, is a pivotal contributor to the oxidative stress observed in MS.

View Article and Find Full Text PDF

The Impact of Modifiable Risk Factors on the Endothelial Cell Methylome and Cardiovascular Disease Development.

Front Biosci (Landmark Ed)

January 2025

School of Cardiovascular and Metabolic Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, SE5 9NU London, UK.

Cardiovascular disease (CVD) is the most prevalent cause of mortality and morbidity in the Western world. A common underlying hallmark of CVD is the plaque-associated arterial thickening, termed atherosclerosis. Although the molecular mechanisms underlying the aetiology of atherosclerosis remain unknown, it is clear that both its development and progression are associated with significant changes in the pattern of DNA methylation within the vascular cell wall.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!