Pursuing high-energy-density lithium metal batteries (LMBs) necessitates the advancement of electrolytes. Despite demonstrating high compatibility with lithium metal anodes (LMAs), ether-based electrolytes face challenges in achieving stable cycling at high voltages. Herein, we propose a strategy to enhance the high-voltage stability of medium-concentration (∼1 M) ether electrolytes by altering the reaction pathway of ether solvents. By employing a 1 M lithium difluoro(oxalato)borate in dimethoxyethane (LiDFOB/DME) electrolyte, we observed that LiDFOB displays a pronounced tendency for decomposition over DME, leading to a modification in the decomposition pathway of DME. This modification facilitates the formation of a stable organic-inorganic hybrid interface. Utilizing such an electrolyte, the Li-LCO cell demonstrates a discharge specific capacity of 146 mAh g (5 C) and maintains retention of 86% over 1000 cycles at 2 C under a 4.5 V cutoff voltage. Additionally, the optimized ether electrolyte demonstrated outstanding cycling performance in Li-LCO full cells under practical conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.3c02013 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!