The complexity of surgical treatments for large-area soft tissue injuries makes placing large implants into injury sites challenging. Aliphatic polyesters are often used for scaffold preparation in tissue engineering owing to their excellent biodegradability and biocompatibility. Scaffolds with shape-memory effect (SME) can also avoid large-volume trauma during the implantation. However, the complexity and diversity of diseases require more adaptable and precise processing methods. Four-dimensional (4D) printing, a booming smart material additive manufacturing technology, provides a new opportunity for developing shape memory scaffolds. With the aim of personalized or patient-adaptable soft tissues such as blood vessels, we developed a feasible strategy for fabricating scaffolds with fine architectures using 4D printing crosslinkable shape memory linear copolyesters using fused deposition modeling (FDM). To overcome the weak bonding strength of each printed layer during FDM, a catalyst-free photo-crosslinkable functional group derived from biocompatible cinnamic acid was embedded into the linear copolyesters as in situ crosslinking points during FDM printing. Under ultraviolet-assisted irradiation, the resulting 4D scaffold models demonstrated excellent SME, desirable mechanical performance, and good stability in a water environment owing to the chemical bonding between each layer. Moreover, the excellent biocompatibility of the scaffold was evaluated in vitro and in vivo. The developed composite scaffolds could be used for minimally invasive soft tissue repair.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c10747 | DOI Listing |
Sleep
January 2025
UR2NF-Neuropsychology and Functional Neuroimaging Research Unit affiliated at CRCN - Centre for Research in Cognition and Neurosciences and UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.
Enhancing the retention of recent memory traces through sleep reactivation is possible via Targeted Memory Reactivation (TMR), involving cueing learned material during post-training sleep. Evidence indicates detectable short-term microstructural changes in the brain within an hour after motor sequence learning, and post-training sleep is believed to contribute to the consolidation of these motor memories, potentially leading to enduring microstructural changes. In this study, we explored how TMR during post-training sleep affects performance gains and delayed microstructural remodeling, using both standard Diffusion Tensor Imaging (DTI) and advanced Neurite Orientation Dispersion & Density Imaging (NODDI).
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Centre of Nanoheterostructure Physics, Ioffe Institute, Saint Petersburg 194021, Russia.
The paper presents a review of CNTs synthesis methods and their application as a functional filler to obtain polymer composites for various technical purposes for strain gauges, electrical heating, anti-static coatings, electrically conductive compounds, etc. Various synthesis methods allow CNTs with different morphology and structural properties to be created, which expands the possibilities of the application of such nanoscale structures. Polymers can provide such effects as 'shape memory' and self-repair of mechanical defects.
View Article and Find Full Text PDFAtten Percept Psychophys
January 2025
Department of Psychology, The Ohio State University, 1835 Neil Ave, Columbus, OH, 43210, USA.
Our attention can sometimes be disrupted by salient but irrelevant objects in the environment. This distractor interference can be reduced when distractors appear frequently, allowing us to anticipate their presence. However, it remains unknown whether distractor frequency can be learned implicitly across distinct contexts.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum 44780, Germany.
The novelty, saliency, and valency of ongoing experiences potently influence the firing rate of the ventral tegmental area (VTA) and the locus coeruleus (LC). Associative experience, in turn, is recorded into memory by means of hippocampal synaptic plasticity that is regulated by noradrenaline sourced from the LC, and dopamine, sourced from both the VTA and LC. Two persistent forms of synaptic plasticity, long-term potentiation (LTP), and long-term depression (LTD) support the encoding of different kinds of spatial experience.
View Article and Find Full Text PDFWorking memory (WM) is an evolving concept. Our understanding of the neural functions that support WM develops iteratively alongside the approaches used to study it, and both can be profoundly shaped by available tools and prevailing theoretical paradigms. Here, the organizers of the 2024 Working Memory Symposium-inspired by this year's meeting-highlight current trends and looming questions in WM research.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!