Nanomedicines have contradictory size requirements to overcome systemic barriers and penetrate the tumor extracellular matrix (ECM). Larger-sized nanoparticles (50-200 nm) exhibit prolonged blood circulation half-life and improved tumor enrichment, while small-sized nanoparticles (4-20 nm) easily penetrate deep tumor tissues. Therefore, the development of intelligent responsive nanomedicine systems can not only increase nanodrug tumor accumulation but also improve their penetration into the ECM. Herein, we propose an intelligent responsive nanoparticle triggered by near-infrared light (NIR). The nanoparticle was constructed by a temperature-sensitive liposome (TSL) encapsulating ultrasmall melanin nanoparticles (MNPs) loaded with doxorubicin (MNP/doxorubicin (DOX)@TSL). When exposed to NIR irradiation, the tailor-made nanoparticles not only effectively ablated the tumor cells around blood vessels but also destroyed the structural integrity and released loaded ultrasmall MNP/DOX (<10 nm) to promote deep tumor penetration and enhance interior tumor cell killing. This NIR-triggered intelligent nanoparticle successfully integrated photothermal therapy (PTT) for perivascular tumor cells and chemotherapy for deep tumor cell inhibition. The results showed remarkable tumor regression in 4T1 breast tumor-bearing mice by 74.2%. This controllable size switchable nanosystem with efficient tumor accumulation and penetration has shown great potential in improving synergistic antitumor effects of photochemotherapy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c06674DOI Listing

Publication Analysis

Top Keywords

intelligent responsive
12
tumor
6
nanoparticles
5
responsive nanoparticles
4
nanoparticles multilevel
4
multilevel triggered
4
triggered drug
4
drug penetration
4
penetration tumor
4
tumor photochemotherapy
4

Similar Publications

Unipolar Barrier Photodetectors Based on Van Der Waals Heterostructure with Ultra-High Light On/Off Ratio and Fast Speed.

Adv Sci (Weinh)

January 2025

Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei, 230601, China.

Unipolar barrier architecture is designed to enhance the photodetector's sensitivity by inducing highly asymmetrical barriers, a higher barrier for blocking majority carriers to depressing dark current, and a low minority carrier barrier without impeding the photocurrent flow through the channel. Depressed dark current without block photocurrent is highly desired for uncooled Long-wave infrared (LWIR) photodetection, which can enhance the sensitivity of the photodetector. Here, an excellent unipolar barrier photodetector based on multi-layer (ML) graphene (G) is developed, WSe, and PtSe (G-WSe-PtSe) van der Waals (vdW) heterostructure, in which extremely low dark current of 1.

View Article and Find Full Text PDF

Modeling and analysis of explicit dynamics of foot landing.

Med Biol Eng Comput

January 2025

School of Medical Engineering, Department of Cardiology of The First Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, 453003, Henan, China.

The research aims to investigate the mechanical response of footfalls at different velocities to understand the mechanism of heel injury and provide a scientific basis for the prevention and treatment of heel fractures. A three-dimensional solid model of foot drop was constructed using anatomical structures segmented from medical CT scans, including bone, cartilage, ligaments, plantar fascia, and soft tissues, and the impact velocities of the foot were set to be 2 m/s, 4 m/s, 6 m/s, 8 m/s, and 10 m/s. Explicit kinetic analysis methods were used to investigate the mechanical response of the foot landing with different speeds to explore the damage mechanism of heel bone at different impact velocities.

View Article and Find Full Text PDF

A carboxymethyl cellulose-based pH-responsive chlorine dioxide release film for strawberry preservation.

Int J Biol Macromol

January 2025

Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macao; Zhuhai MUST Science and Technology Research Institute, Zhuhai 519031, Guangdong, China. Electronic address:

Fruit spoilage caused by microorganisms results in huge economic losses and health risks worldwide every year. To develop an intelligent antimicrobial material capable of responding to the physiological activity of postharvest fruits and releasing antibacterial agents on demand, we fabricated a pH-responsive film for the release of chlorine dioxide (ClO) using carboxymethyl cellulose (CMC) and sodium chlorite (NaClO) via the solution casting method, with a CMC:NaClO ratio of 1:2 w/w. An acid environment simulated by 4 % acetic acid activated 43 % of ClO released by the film within 7 days.

View Article and Find Full Text PDF

Background: The mechanisms underlying esketamine's therapeutic effects remain elusive. The study aimed to explore the impact of single esketamine treatment on LPS-induced adolescent depressive-like behaviors and the role of Nrf2 regulated neuroinflammatory response in esketamine-produced rapid antidepressant efficacy.

Methods: Adolescent male C57BL/6J mice were randomly assigned to three groups: control, LPS, and LPS + esketamine (15 mg/kg, i.

View Article and Find Full Text PDF

Actuation performance of MXenes in response to moisture gradients: A systematic investigation.

Talanta

December 2024

Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, 130012, PR China. Electronic address:

Humidity-responsive actuators (HRA) have garnered significant interest across various domains. Since 2020, MXene have been extensively studied for their potential in HRA, demonstrating remarkable performance. Thus far, more than 70 MXene materials have been found.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!