Self-assembling virus-like particles (VLPs) can tolerate a wide degree of genetic and chemical manipulation to their capsid protein to display a foreign molecule polyvalently. We previously reported the successful incorporation of foreign peptide sequences in the junction loop and onto the C-terminus of PP7 dimer VLPs, as these regions are accessible for surface display on assembled capsids. Here, we report the implementation of a library-based approach to test the assembly tolerance of PP7 dimer capsid proteins to insertions or terminal extensions of randomized 15-mer peptide sequences. By performing two iterative rounds of assembly-based selection, we evaluated the degree of favorability of all 20 amino acids at each of the 15 randomized positions. Deep sequencing analysis revealed a distinct preference for the inclusion of hydrophilic peptides and negatively charged amino acids (Asp and Glu) and the exclusion of positively charged peptides and bulky and hydrophobic amino acid residues (Trp, Phe, Tyr, and Cys). Within the libraries tested here, we identified 4000 to 22,000 unique 15-mer peptide sequences that can successfully be displayed on the surface of the PP7 dimer capsid. Overall, the use of small initial libraries consisting of no more than a few million members yielded a significantly larger number of unique and assembly-competent VLP sequences than have been previously characterized for this class of nucleoprotein particle.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10540251PMC
http://dx.doi.org/10.1021/acsnano.3c06178DOI Listing

Publication Analysis

Top Keywords

peptide sequences
12
pp7 dimer
12
dimer capsid
8
15-mer peptide
8
amino acids
8
exploring landscape
4
pp7
4
landscape pp7
4
pp7 virus-like
4
virus-like particle
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!