Tobacco use is a leading cause of cancer, cardiovascular and respiratory disease, and preventable death in the United States. The brains of individuals with nicotine dependence are characterized by damaged mesolimbic pathways in the medial portion of the limbic and frontal lobes, creating positive reinforcing mechanisms. Transcranial direct current stimulation (tDCS) targets this neuroadaptation to improve smokers' nicotine-related outcomes, such as craving and smoking behavior, by depolarizing or hyperpolarizing the neurons of the brain. Recent literature reported promising outcomes in smokers after tDCS treatment interventions. tDCS has great potential for clinical nursing research for tobacco control given its multiple methodological advantages and few disadvantages. Nurse researchers can consider individualized and home-based tDCS interventions for community-based tobacco control research and may need to consider objective outcome measures (e.g., cotinine in urine) and addiction-related cognitive variables (e.g., self-regulation). Users of electronic nicotine delivery systems also need to be considered as participants in tDCS interventions. Additional considerations for nursing research are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/JAN.0000000000000542 | DOI Listing |
Cerebellum
January 2025
Department of Neuroscience and Physiology, Grossman School of Medicine, NYU Neuroscience Institute, New York University, New York, NY, 10016, USA.
Cerebellar transcranial alternating current stimulation (ctACS) has the potential to be an appealing, non-invasive treatment option for psychiatric and neurological disorders. However, realization of this potential has been limited by gaps in our knowledge of how ctACS affects cerebellar output on single cell and population levels. Previously, we showed that AC stimulation applied to the cerebellar surface produced a strong, frequency-dependent modulation of Purkinje cell (PC) and cerebellar nuclear (CN) cell activity.
View Article and Find Full Text PDFCerebellum
January 2025
Department of Neuroscience, University of Mons, Mons, Belgium.
As brain-machine interfaces (BMI) are growingly used in clinical settings, understanding how to apply brain stimulation is increasingly important. Despite the emergence of optogenetic techniques, ethical and medical concerns suggest that interventions that are safe and non-invasive, such as Transcranial Alternating Current Stimulation (tACS), are more likely to be employed in human in the near future. Consequently, the question of how and where to apply current stimulation is becoming increasingly important for the efficient neuromodulation of both neurological and psychiatric disorders.
View Article and Find Full Text PDFFront Neuroergon
December 2024
Department of Industrial and Systems Engineering, University of Wisconsin Madison, Madison, WI, United States.
Introduction: First responders play a pivotal role in ensuring the wellbeing of individuals during critical situations. The demanding nature of their work exposes them to prolonged shifts and unpredictable situations, leading to elevated fatigue levels. Modern countermeasures to fatigue do not provide the best results.
View Article and Find Full Text PDFFront Psychol
December 2024
Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy.
Introduction: Among the tasks employed to investigate decisional processes, the Iowa Gambling Task (IGT) appears to be the most effective since it allows for deepening the progressive learning process based on feedback on previous choices. Recently, the study of decision making through the IGT has been combined with the application of transcranial direct current stimulation (tDCS) to understand the cognitive mechanisms and the neural structures involved. However, to date no review regarding the effects of tDCS on decisional processes assessed through the IGT is available.
View Article and Find Full Text PDFArch Phys Med Rehabil
December 2024
Stroke Research Center, Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China; Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China; Clinical Research Center for Precision Diagnosis and Treatment of Neurological Diseases of Fujian Province, Fuzhou, China. Electronic address:
Objective: Repetitive transcranial magnetic stimulation (rTMS) is a promising approach in improving swallowing function after stroke. However, comparative efficacy of different rTMS protocols for post-stroke dysphagia (PSD) remains unclear.
Data Sources: PubMed, Embase and Cochrane database were systematically searched for eligible random controlled trials (RCTs) from inception to 30 August 2024.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!