Introspective Deep Metric Learning.

IEEE Trans Pattern Anal Mach Intell

Published: April 2024

This paper proposes an introspective deep metric learning (IDML) framework for uncertainty-aware comparisons of images. Conventional deep metric learning methods focus on learning a discriminative embedding to describe the semantic features of images, which ignore the existence of uncertainty in each image resulting from noise or semantic ambiguity. Training without awareness of these uncertainties causes the model to overfit the annotated labels during training and produce overconfident judgments during inference. Motivated by this, we argue that a good similarity model should consider the semantic discrepancies with awareness of the uncertainty to better deal with ambiguous images for more robust training. To achieve this, we propose to represent an image using not only a semantic embedding but also an accompanying uncertainty embedding, which describes the semantic characteristics and ambiguity of an image, respectively. We further propose an introspective similarity metric to make similarity judgments between images considering both their semantic differences and ambiguities. The gradient analysis of the proposed metric shows that it enables the model to learn at an adaptive and slower pace to deal with the uncertainty during training. Our framework attains state-of-the-art performance on the widely used CUB-200-2011, Cars196, and Stanford Online Products datasets for image retrieval. We further evaluate our framework for image classification on the ImageNet-1 K, CIFAR-10, and CIFAR-100 datasets, which shows that equipping existing data mixing methods with the proposed introspective metric consistently achieves better results (e.g., +0.44% for CutMix on ImageNet-1 K).

Download full-text PDF

Source
http://dx.doi.org/10.1109/TPAMI.2023.3312311DOI Listing

Publication Analysis

Top Keywords

deep metric
12
metric learning
12
introspective deep
8
metric
6
semantic
6
image
5
introspective
4
learning
4
learning paper
4
paper proposes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!