Revealing Allostery in PTPN11 SH2 Domains from MD Simulations.

Methods Mol Biol

Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany.

Published: September 2023

Src-homology 2 (SH2) domains are protein interaction domains that bind to specific peptide motifs containing phosphotyrosine. SHP2, a tyrosine phosphatase encoded by PTPN11 gene, which has been emerged as positive or negative modulator in multiple signaling pathways, contains two SH2 domains, respectively, called N-SH2 and C-SH2. These domains play a relevant role in regulating SHP2 activity, either by recognizing its binding partners or by blocking its catalytic site. Considering the multiple functions that these domains carry out in SHP2, N-SH2 and C-SH2 represent an interesting case of study. In this chapter, we present a methodology that permits, by means of the principal component analysis (PCA), to study and to rationalize the structures adopted by the SH2 domains, in terms of the conformations of their binding sites. The structures can be distinguished, grouped, classified, and reported in a diagram. This approach permits to identify the accessible conformations of the SH2 domains in different binding conditions and to eventually reveal allosteric interactions. The method further reveals that the conformation dynamics of N-SH2 and C-SH2 strongly differ, which likely reflects their distinct functional roles.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-3393-9_4DOI Listing

Publication Analysis

Top Keywords

sh2 domains
20
n-sh2 c-sh2
12
domains
8
sh2
5
revealing allostery
4
allostery ptpn11
4
ptpn11 sh2
4
domains simulations
4
simulations src-homology
4
src-homology sh2
4

Similar Publications

The Src homology 2 domain-containing inositol 5-phosphatase 1 (SHIP1) is a multidomain protein consisting of two protein-protein interaction domains, the Src homology 2 (SH2) domain, and the proline-rich region (PRR), as well as three phosphoinositide-binding domains, the pleckstrin homology-like (PHL) domain, the 5-phosphatase (5PPase) domain, and the C2 domain. SHIP1 is commonly known for its involvement in the regulation of the PI3K/AKT signaling pathway by dephosphorylation of phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P) at the D5 position of the inositol ring. However, the functional role of each domain of SHIP1 for the regulation of its enzymatic activity is not well understood.

View Article and Find Full Text PDF

Unlabelled: SHP1 (PTPN6) and SHP2 (PTPN11) are closely related protein-tyrosine phosphatases (PTPs), which are autoinhibited until their SH2 domains bind paired tyrosine-phosphorylated immunoreceptor tyrosine-based inhibitory/switch motifs (ITIMs/ITSMs). These PTPs bind overlapping sets of ITIM/ITSM-bearing proteins, suggesting that they might have some redundant functions. By studying T cell-specific single and double knockout mice, we found that SHP1 and SHP2 redundantly restrain naïve T cell differentiation to effector and central memory phenotypes, with SHP1 playing the dominant role.

View Article and Find Full Text PDF

SH2 (Src Homology 2) domains play a crucial role in phosphotyrosine-mediated signaling and have emerged as promising drug targets, particularly in cancer therapy. STAT3 (Signal Transducer and Activator of Transcription 3), which contains an SH2 domain, plays a pivotal role in cancer progression and immune evasion because it facilitates the dimerization of STAT3, which is essential for their activation and subsequent nuclear translocation. SH2 domain-mediated STAT3 inhibition disrupts this binding, reduces phosphorylation of STAT3, and impairs dimerization.

View Article and Find Full Text PDF

Short linear peptide motifs play important roles in cell signaling. They can act as modification sites for enzymes and as recognition sites for peptide binding domains. SH2 domains bind specifically to tyrosine-phosphorylated proteins, with the affinity of the interaction depending strongly on the flanking sequence.

View Article and Find Full Text PDF

Discovery of anti-tumor small molecule lead compounds targeting the SH3 domain of c-Src protein through virtual screening and biological evaluation.

Arch Biochem Biophys

February 2025

Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China. Electronic address:

Article Synopsis
  • c-Src is a non-receptor tyrosine kinase involved in important cellular functions like growth and movement, and its dysfunction is linked to cancer progression.
  • Current treatments mainly target its kinase domain, but drug resistance limits their effectiveness.
  • This study discovered three compounds that effectively bind to the SH3 domain of c-Src and inhibit its activity, suggesting new potential anti-cancer drugs that could overcome resistance issues.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!