Purification and Fractionation of Lignin via ALPHA: Liquid-Liquid Equilibrium for the Lignin-Acetic Acid-Water System.

ChemSusChem

Chemical and Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd, Clemson, South Carolina, 29634-0909, USA.

Published: January 2024

In order to effectively practice the Aqueous Lignin Purification with Hot Agents (ALPHA) process for lignin purification and fractionation, the temperatures and feed compositions where regions of liquid-liquid equilibrium (LLE) exist must be identified. To this end, pseudo-ternary phase diagrams for the lignin-acetic acid-water system were mapped out at 45-95 °C and various solvent: feed lignin mass ratios (S : F). For a given temperature, the accompanying SL (solid-liquid), SLL (solid-liquid-liquid), and one-phase regions were also located. For the first time, ALPHA using acetic acid (AcOH)-water solution was applied to a lignin recovered via the commercial LignoBoost process. In addition to determining tie-line compositions for the two regions of LLE that were discovered, the distribution of lignin and key impurities (the latter can negatively impact lignin performance for materials applications) between the two liquid phases was also measured. As a representative example, lignin isolated in the lignin-rich phase was reduced 7x in metals and 4x in polysaccharides by using ALPHA with a feed solvent composition of 50-55 % AcOH and an S : F of 6 : 1, with said lignin being obtained at a yield of 50-70 % of the feed lignin and having a molecular weight triple that of the feed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.202300989DOI Listing

Publication Analysis

Top Keywords

lignin
10
purification fractionation
8
liquid-liquid equilibrium
8
lignin-acetic acid-water
8
acid-water system
8
lignin purification
8
compositions regions
8
feed lignin
8
feed
5
fractionation lignin
4

Similar Publications

ENZYMATIC TREATMENT OF LIGNIN IN ALKALINE HOMOGENEOUS SYSTEMS: A REVIEW ON ALKALIPHILIC LACCASES.

ChemSusChem

January 2025

Bordeaux University, Laboratoire de Chimie des Polymères Organiques - INPB/ENSCBP, 16 Avenue Pey Berland, 33607, Pessac Cedex, FRANCE.

This short review explores the enzymatic treatment of lignin in alkaline homogeneous systems, focusing on alkaliphilic laccases. In acidic conditions, native laccases are known to promote lignin polymerization, while the addition of mediators enables depolymerization into valuable small molecules. Alkaliphilic laccases, which remain active in basic pH where the vast majority of industrial lignins are soluble, present an interesting alternative.

View Article and Find Full Text PDF

Current sound-absorbing materials, reliant on nonrenewable resources, pose sustainability and disposal challenges. This study introduces a novel collagen-lignin sponge (CLS), a renewable biomass-based material that combines collagen's acoustic properties with lignin's structural benefits. CLSs demonstrate high porosity (>0.

View Article and Find Full Text PDF

Semi-rational design of an aromatic dioxygenase by substrate tunnel redirection.

iScience

January 2025

State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.

Lignin valorization is crucial for achieving economic and sustainable biorefinery processes. However, the enzyme substrate preferences involved in lignin degradation remain poorly understood, and low activity toward specific substrates presents a significant challenge to the efficient utilization of lignin. In this study, we investigated the substrate promiscuity of Ado, a key enzyme involved in lignin valorization.

View Article and Find Full Text PDF

Background: Programmed cell death-ligand 1 (PD-L1) is overexpressed in tumor cells, which promotes tumor cell survival and cell proliferation and causes tumor cells to escape T-cell killing. Schisanhenol, a biphenyl cyclooctene lignin-like compound, was extracted and isolated from the plant named Schisandra rubriflora (Franch.).

View Article and Find Full Text PDF

Lignin, as the abundant carbon polymer, is essential for carbon cycle and biorefinery. Microorganisms interact to form communities for lignin biodegradation, yet it is a challenge to understand such complex interactions. Here, we develop a coastal lignin-degrading bacterial consortium (LD), through "top-down" enrichment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!