In regeneration, a damaged body part grows back to its original form. Understanding the mechanisms and physical principles underlying this process has been limited by the difficulties of visualizing cell signals and behaviors in regeneration. Zebrafish scales are emerging as a model system to investigate morphogenesis during vertebrate regeneration using quantitative live imaging. Scales are millimeter-sized dermal bone disks forming a skeletal armor on the body of the fish. The scale bone is deposited by an adjacent monolayer of osteoblasts that, after scale loss, regenerates in about 2 weeks. This intriguing regenerative process is accessible to live confocal microscopy, quantifications, and mathematical modeling. Here, I describe methods to image scale regeneration live, tissue-wide and at sub-cellular resolution. Furthermore, I describe methods to process the resulting images and quantify cell, tissue, and signal dynamics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-3401-1_12 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!