As a promising drug delivery system, the temperature-sensitive liquid embolic agent (TempSLE) has yet to be reported in animal experiments in treating gastric cancer. We observed and compared computed tomography (CT) imaging changes, tumor volume, HE staining, and immunohistochemistry after transcatheter arterial chemoembolization (TACE) treatment in rabbit VX2 gastric cancer models to clarify the effectiveness of TempSLE loaded with oxaliplatin (TempSLE/Oxa) in treating gastric cancer. One milliliter TempSLE can be loaded with 20 mg oxaliplatin. The accumulative drug release rate at 30 min was 38.76%, and after 24 h, it reached more than 90%. CT examination 1 week after TACE revealed that the TempSLE/Oxa group presents unenhanced hypodense necrotic foci, the iodinated oil loaded with oxaliplatin (Ioil/Oxa) group presents shrinking tumors but still visible speckled foci of enhancement, and the normal saline (NS) group presents heterogeneous enhancement with larger tumors than before. In the postoperative autopsy of TACE, the tumor volumes of TempSLE/Oxa, Ioil/Oxa, and NS groups were 0.15 ± 0.06 cm, 0.37 ± 0.11 cm, and 1.19 ± 0.16 cm, respectively, all of which were statistically different. The positive vascular endothelial growth factor (VEGF) and proliferating cell nuclear antigen (PCNA) expression percentages in the TempSLE/Oxa, Ioil/Oxa, and NS groups were statistically different and lowest in the TempSLE/Oxa group. In conclusion, the TempSLE can load a high dose of oxaliplatin to meet the demand of clinical applications. TempSLE/Oxa could effectively inhibit tumor cell proliferation and angiogenesis. This study provides experimental evidence for the further clinical application of the TempSLE/Oxa.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13346-023-01425-5DOI Listing

Publication Analysis

Top Keywords

loaded oxaliplatin
16
gastric cancer
16
group presents
12
temperature-sensitive liquid
8
liquid embolic
8
embolic agent
8
rabbit vx2
8
vx2 gastric
8
treating gastric
8
tempsle loaded
8

Similar Publications

Gold nanoparticles decorated FOLFIRINOX loaded liposomes for synergistic therapy of pancreatic cancer.

Int J Pharm

January 2025

Department of Bioengineering, Graduate School of Science and Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey; Department of Chemical Engineering, Faculty of Engineering, Hacettepe University, Ankara, 06800, Turkey. Electronic address:

Pancreatic cancer is predicted to be the second highest cause of cancer deaths by 2030, with a mortality rate of 98 % and a 5-year survival rate of only 4-8 %. FOLFIRINOX which consists of four main ingredients has shown superior efficacy in treating patients with pancreatic cancer compared to other agents and combinations. However, toxicities have prevented full-dose use of FOLFIRINOX.

View Article and Find Full Text PDF

A colon-specific drug delivery system has great potential for the oral administration of colorectal cancer. However, the uncontrollable fate of liposomes makes their effectiveness for colonic location, and intratumoral accumulation remains unsatisfactory. Here, an oral colon-specific drug delivery system (CBS-CS@Lipo/Oxp/MTZ) was constructed by covalently conjugating spores (CBS) with drugs loaded chitosan (CS)-coated liposomes, where the model chemotherapy drug oxaliplatin (Oxp) and anti-anaerobic bacteria agent metronidazole (MTZ) were loaded.

View Article and Find Full Text PDF

Ultrasound-Triggered Nanogel Boosts Chemotherapy and Immunomodulation in Colorectal Cancer.

ACS Appl Mater Interfaces

January 2025

Department of Interventional Ultrasound, PLA General Hospital, Beijing 100853, China.

Chemotherapy is the primary therapy for colorectal cancer. However, its efficacy has been limited by chemoresistance, which is mainly caused by inadequate intratumoral drug accumulation and immunosuppressive microenvironments. To address these limitations, we developed a low-intensity ultrasound (LIU)-controlled and charge-reversible nanogel (R-NG), utilizing conjugated chitosan-polypyrrole polymers linked via thioketal bonds, with TiO absorbed onto its surface.

View Article and Find Full Text PDF

Triple negative breast cancer (TNBC) exhibits higher susceptibility towards oxaliplatin (OXA) due to a faulty DNA damage repair system. However, the unfavorable physicochemical properties and risk of toxicities limit the clinical utility of OXA. Therefore, to impart kinetic inertness, site-specific delivery, and multidrug action, an octahedral Pt(IV) prodrug was developed by using chlorambucil (CBL) as a choice of ligand.

View Article and Find Full Text PDF

Oxaliplatin-loaded amphiphilic hyaluronic acid nanohydrogel formed via interfacial reactions enhances the therapeutic effect of targeted tumor.

Int J Biol Macromol

January 2025

School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China. Electronic address:

Hyaluronic acid (HA) nanogels have attracted widespread attention, aiming to improve cancer treatment paradigms and overcome the limitations of free-form drugs. However highly hydrophilic nature of HA nanogels limits their potential application where amphiphilic interactions are required for the delivery of hydrophobic drugs. In this study, we developed amphiphilic structure oxaliplatin (OXA) loaded oligo-hyaluronic acid (oHA)-PEG-Octane nanogel using stable disulfide bonds with ultrasonic re-emulsion method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!