Development of reusable Ni/γ-AlO catalyst for catalytic hydrolysis of waste PET bottles into terephthalic acid.

Environ Sci Pollut Res Int

Department of Civil and Environmental Engineering, Faculty of Science and Engineering, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, 47000, Thailand.

Published: October 2023

In order to efficiently recycle waste polyethylene terephthalate (PET) bottles, this study aimed to enhance the hydrolysis process to convert PET bottle into valuable terephthalic acid (TPA) by developing effective and reusable Ni/γ-AlO catalysts. A series of Ni/γ-AlO catalyst was prepared by the impregnation method with different Ni loadings (5-15 wt%) and was characterized by various techniques including XRD, SEM-EDX, and N adsorption-desorption. The prepared catalysts were employed in the catalytic hydrolysis of PET under varied influencing factors, namely reaction temperature (220-280 °C), reaction time (20-60 min), and Ni loading. The response surface methodology (RSM) was used to optimize the operating condition to produce the maximum TPA yield, and the optimal values were determined as follows: reaction temperature = 267.07 °C, reaction time = 48.54 min, and Ni loading = 12.90 wt%, giving the highest TPA yield of 97.06%. The R, F-value, and P-value of the analysis of variance (ANOVA) were 0.9982, 424.96, and <0.0001, respectively, indicating a good fit of the model. The results from XRD and FTIR measurement of the produced TPA indicated the high purity and comparable chemical structures to the TPA standard. In addition, the 12.9Ni/Al catalyst exhibited high catalytic activity in repeated cycles of hydrolysis process of PET and could be regenerated by calcination to restore its catalytic activity. This finding could be a promising alternative for an effective TPA recovery from waste plastic bottles.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-023-29596-1DOI Listing

Publication Analysis

Top Keywords

reusable ni/γ-alo
8
ni/γ-alo catalyst
8
catalytic hydrolysis
8
pet bottles
8
terephthalic acid
8
reaction temperature
8
°c reaction
8
reaction time
8
min loading
8
tpa yield
8

Similar Publications

Luffa is a robust, renewable biomaterial known for its low mass, high specific strength, and non-toxicity, making it ideal for composite development. This study modified luffa to create the LF@ppy@LDH nanocomposite, combining luffa, polypyrrole, and layered double hydroxides to efficiently remove ibuprofen from water. Techniques like FE-SEM, EDX, FTIR, and XRD confirmed the modification.

View Article and Find Full Text PDF

Recycling e-waste into gold-loaded covalent organic framework catalysts for terminal alkyne carboxylation.

Nat Commun

December 2024

Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, USA.

The rising demand for gold requires innovative methods for its recovery from e-waste. Here we present the synthesis of two tetrazine-based vinyl-linked covalent organic frameworks: TTF-COF and TPE-COF that adsorb gold ions and nanoparticles and catalyze the carboxylation of terminal alkynes. These covalent organic frameworks have low band gaps and high photocurrent responses.

View Article and Find Full Text PDF

A novel nanocomposite magnetic hydrogel was synthesized based on κ-carrageenan, acrylic acid, and activated carbon as an absorbent for removing heavy metal ions from aqueous solution. FT-IR spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and vibration sample magnetometer (VSM) were employed to confirm the structure of the nanocomposite hydrogels. The effects of contact time, pH, particle size, temperature, and metal ion concentration on the metal ion adsorption were investigated.

View Article and Find Full Text PDF

Enhanced removal of Ni and Co from wastewater using a novel 2-hydroxyphosphonoacetic acid modified Mg/Fe-LDH composite adsorbent.

Water Res

December 2024

Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China. Electronic address:

While technological advancements in treating electroplating wastewater continue, removing high concentrations of Ni and Co remains a challenge. Surface functionalization of clay has emerged as a pivotal approach for effectively removing heavy metals, rivaling intercalation modification in its effectiveness. This study investigated the adsorption performance and mechanisms of a phosphonate-modified layered double hydroxide material, employing batch experiments and simulation calculations to elucidate the impact of surface modification on adsorption behavior.

View Article and Find Full Text PDF

Directed coordination of C/N-termini of cyano group in metal hexacyanoferrates to efficient palladium recovery: Enhanced adsorption affinity and selectivity.

Environ Res

December 2024

Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic address:

N-termini Cyano group (CN) in metal hexacyanoferrates (MHCF) have been identified as specific-affinity sites for palladium (Pd), but C-termini CN do not effectively serve as Pd adsorption sites due to their stronger bonds with the metal ligands (M), which reduces the activity and density of CN. Herein, the optimization of directional coordination of cyano group C/N-termini by modulating the electronic structure of the M (Fe, Co, and Ni) in MHCF was investigated to reinforce the Pd recovery. Spectroscopic analyses and DFT calculations revealed that NiHCF exhibited N-site mono-coordination, whereas CoHCF displayed C-site mono-coordination due to spin-exchange interactions, leading to the strengthened N-Co bonds and weakened Fe-C bonds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!