Eight promoters were cloned, from which AC and G-box cis-elements were identified. PAP1 enhanced the promoter activity. 2,4-D reduced the anthocyanin biosynthesis via downregulating the expression of the PAP1 transgene. Artemisia annua is an effective antimalarial medicinal crop. We have established anthocyanin-producing red cell cultures from this plant with the overexpression of Production of Anthocyanin Pigment 1 (PAP1) encoding a R2R3MYB transcription factor. To understand the molecular mechanism by which PAP1 activated the entire anthocyanin pathway, we mined the genomic sequences of A. annua and obtained eight promoters of the anthocyanin pathway genes. Sequence analysis identified four types of AC cis-elements from six promoters, the MYB response elements (MRE) bound by PAP1. In addition, six promoters were determined to have at least one G-box cis-element. Eight promoters were cloned for activity analysis. Dual luciferase assays showed that PAP1 significantly enhanced the promoting activity of seven promoters, indicating that PAP1 turned on the biosynthesis of anthocyanins via the activation of these pathway gene expression. To understand how 2,4-dichlorophenoxyacetic acid (2,4-D), an auxin, regulates the PAP1-activated anthocyanin biosynthesis, five different concentrations (0, 0.05, 0.5, 2.5, and 5 µM) were tested to characterize anthocyanin production and profiles. The resulting data showed that the concentrations tested decreased the fresh weight of callus growth, anthocyanin levels, and the production of anthocyanins per Petri dish. HPLC-qTOF-MS/MS-based profiling showed that these concentrations did not alter anthocyanin profiles. Real-time RT-PCR was completed to characterize the expression PAP1 and four representative pathway genes. The results showed that the five concentrations reduced the expression levels of the constitutive PAP1 transgene and three pathway genes significantly and eliminated the expression of the chalcone synthase gene either significantly or slightly. These data indicate that the constitutive PAP1 expression depends on gradients added in the medium. Based on these findings, the regulation of 2,4-D is discussed for anthocyanin engineering in red cells of A. annua.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00425-023-04230-z | DOI Listing |
Plant Physiol Biochem
January 2025
College of Horticulture, Henan Agricultural University, 218 Pingan Road, 450046, Zhengzhou, China; Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Henan Agricultural University, Zhengzhou, 450046, China. Electronic address:
The basic helix-loop-helix (bHLH) transcription factors (TFs) play important roles in various plant developmental and biological processes. However, the precise mechanisms by which bHLH TFs regulate fruit ripening warrant further investigation. Polyamine oxidase (PAO) is crucial for polyamine (PA) catabolism and plays crucial roles in fruit ripening.
View Article and Find Full Text PDFPlants (Basel)
January 2025
National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100086, China.
One of the most important and essential components of sustainable agricultural production is biostimulants, which are emerging as a notable alternative of chemical-based products to mitigate soil contamination and environmental hazards. The most important modes of action of bacterial plant biostimulants on different plants are increasing disease resistance; activation of genes; production of chelating agents and organic acids; boosting quality through metabolome modulation; affecting the biosynthesis of phytochemicals; coordinating the activity of antioxidants and antioxidant enzymes; synthesis and accumulation of anthocyanins, vitamin C, and polyphenols; enhancing abiotic stress through cytokinin and abscisic acid (ABA) production; upregulation of stress-related genes; and the production of exopolysaccharides, secondary metabolites, and ACC deaminase. is a free-living bacterial genus which can promote the yield and growth of many species, with multiple modes of action which can vary on the basis of different climate and soil conditions.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
(Shen) (Hemiptera: Cicadellidae) is a devastating insect pest species of , significantly affecting the yield and quality of tea. Due to growing concerns over the irrational use of insecticides and associated food safety, it is crucial to better understand the innate resistance mechanism of tea trees to . This study aims to explore the responses of tea trees to different levels of infestation.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
Djulis ( Koidz.), a member of the family plant, is noted for its vibrant appearance and significant ornamental value. However, the mechanisms underlying color variation in its spikes remain unexplored.
View Article and Find Full Text PDFPlants (Basel)
January 2025
State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
Whole grain flour is considered a part of a healthy diet, especially when produced with pigmented wheat (). However, the specific metabolic pathways and mechanisms by which these metabolites affect the end-use quality of pigmented wheat varieties still need to be better understood. This study examined the relationship between metabolite concentrations and the end-use quality of three wheat varieties: common wheat (CW, JM20), black wheat (BW, HJ1), and green wheat (GW, HZ148).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!