Singlet oxygen ( O ) is an excellent reactive oxygen species (ROSs) for the selective conversion of organic matter, especially in advanced oxidation processes (AOPs). However, due to the huge dilemma in synthesizing single-site type catalysts, the control and regulation of O generation in AOPs is still challenging and the underlying mechanism remains largely obscure. Here, taking advantage of the well-defined and flexibly tunable sites of covalent organic frameworks (COFs), we report the first achievement in precisely regulating ROSs generation in peroxymonosulfate (PMS)-based AOPs by site engineering of COFs. Remarkably, COFs with bipyridine units (BPY-COFs) facilitate PMS activation via a nonradical pathway with 100 % O , whereas biphenyl-based COFs (BPD-COFs) with almost identical structures activate PMS to produce radicals (⋅OH and SO ). The BPY-COFs/PMS system delivers boosted performance for selective degradation of target pollutants from water, which is ca. 9.4 times that of its BPD-COFs counterpart, surpassing most reported PMS-based AOPs systems. Mechanism analysis indicated that highly electronegative pyridine-N atoms on BPY-COFs provide extra sites to adsorb the terminal H atoms of PMS, resulting in simultaneous adsorption of O and H atoms of PMS on one pyridine ring, which facilitates the cleavage of its S-O bond to generate O .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202310934 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!