In this work, a single-vial methodology for the extraction and cold vapor generation of mercury(II) was developed, followed by the determination of the analyte by atomic absorption spectrometry, with application in water samples of different salinities. L-cystine-modified FeO nanoparticles (2LcysMNP) were used as sorbent material in the magnetic solid phase extraction (MSPE) in the same flask in which the mercury vapor generation step was performed using a handmade gas-liquid separator developed in our laboratory. The main conditions for extraction, pre-concentration, and cold vapor generation of mercury were optimized. Under the optimized conditions, detection and quantification limits of 0.04 and 0.12 μg L, respectively, were achieved with a relative standard deviation of 7.5%. The single-vial system allowed for a preconcentration factor of 30 and an enrichment factor of 24. The accuracy of the method was evaluated by applying it to certified reference materials, and the obtained values were not significantly different from the expected values according to the Student's -test. Verification of non-specific interferences was assessed by recovery tests, resulting in recoveries ranging from 81 to 111% for water samples of different salinities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3ay01073b | DOI Listing |
Acta Biomater
January 2025
Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, P. R. China. Electronic address:
Targeted organelle therapy is a promising therapeutic method for significantly regulating the tumor microenvironment, yet it often lacks effective strategies for leveraging synergistic enhancement effect. Engineered small extracellular vesicles (sEVs) are expected to address this challenge due to their notable advantages in drug delivery, extended circulation time, and intercellular information transmission. Herein, we prepare sEVs with pH and photothermal dual-responsiveness, which are encapsulated with hydrogels for a quadruple-efficient synergistic therapy.
View Article and Find Full Text PDFRev Esc Enferm USP
January 2025
Universidade Federal de Viçosa, Departamento de Medicina e Enfermagem, Viçosa, MG, Brazil.
Objective: To compare the effectiveness of ear acupuncture with laser and needles in the treatment of anxiety in university students in the post-pandemic context of Covid-19, as well as to evaluate the possible symptoms or adverse reactions triggered by the interventions.
Method: Randomized clinical trial carried out with 126 university students, allocated to the "Needle" (control) and "Laser" (experimental) groups. Five ear acupuncture sessions were performed.
Lasers Med Sci
January 2025
University of Zurich, Zurich, Switzerland.
The aim of this study was to compare the effectiveness of different types of low level laser treatment (LLLT) in reducing pain levels, changing oxygen saturation and bite force in patients with myofacial pain syndrome (MPS). 45 patients were randomly assigned to three groups: Group 1 (GRR laser, n = 15) received LLLT with Gallium-Aluminium-Arsenide (GaAlAs) diode laser with a wavelength of 904 nm and red laser with a wavelength of 650 nm over masseter muscle region. Group 2 (Nd: YAG laser, n = 15) were treated with Neodymium-doped Yttrium Aluminium Garnet laser with a wavelength of 1064 nm and the same protocol with Nd: YAG laser was performed in the Group 3 (placebo, n = 15) using sham device.
View Article and Find Full Text PDFVet Dermatol
January 2025
Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil.
Background: Antimicrobial resistance is increasing each year. For example, in 2019 it was directly responsible for an estimated >1 million deaths. Additionally, the development of new drugs is much slower, generating enormous concerns about responses to infection in the future health scenario.
View Article and Find Full Text PDFThe big potassium (BK) channels remain open with a small limiting probability of ∼ 10 at minimal Ca and negative voltages < -100 mV. The molecular origin and functional significance of such "intrinsic opening" are not understood. Here we combine atomistic simulations and electrophysiological experiments to show that the intrinsic opening of BK channels is an inherent property of the vapor barrier, generated by hydrophobic dewetting of the BK inner pore in the deactivated state.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!