Nanoprecipitation, which is achieved through the diffusion and precipitation of drug molecules in blended solvent and antisolvent phases, is a classic route for constructing nanodrugs (NDs) and previously directed by diffusion-controlled theory. However, the diffusion-controlled mechanism is out of date in the recent preparation of self-delivery supramolecular NDs (SDSNDs), characterized by the construction of drug nanoparticles through supramolecular interactions in the absence of carriers and surfactants. Herein, a "reaction"-like complement, contributed from supramolecular interactions, is proposed for the preparation of naphthoquinone SDSNDs. Different from the diffusion-controlled process, the formation rate of SDSNDs via the "reaction"-like process is almost constant and highly dependent on the supramolecular interaction-determined Gibbs free energy of molecular binding. Thus, the formation rate and drug availability of SDSNDs are greatly improved by engineering the supramolecular interactions, which facilitates the preparation of SDSNDs with expected sizes, components, and therapeutic functions. As a deep understanding of supramolecular-interaction-involved nanoprecipitation, the current "reaction"-like protocol not only provides a theoretical supplement for classic nanoprecipitation but also highlights the potential of nanoprecipitation in shaping self-assembled, coassembled, and metal-ion-associated SDSNDs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.3c05229 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
State Key Laboratory of Fire Science, University of Science and Technology of China, 443 Huangshan Road, Hefei 230027, P. R.China.
The next generation of stretchable electronics seeks to integrate superior mechanical properties with sustainability and sensing stability. Ionically conductive and liquid-free elastomers have gained recognition as promising candidates, addressing the challenges of evaporation and leakage in gel-based conductors. In this study, a sustainable polymeric deep eutectic system is synergistically integrated with amino-terminated hyperbranched polyamide-modified fibers and aluminum ions, forming a conductive supramolecular network with significant improvements in mechanical performance.
View Article and Find Full Text PDFMolecules
January 2025
N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 31, 119991 Moscow, Russia.
The interaction of sodium phytate hydrate CHOP·xNa·yHO (phytNa) with Cu(OAc)·HO and 1,10-phenanthroline (phen) led to the anionic tetranuclear complex [Cu(HO)(phen)(phyt)]·2Na·2NH·32HO (), the structure of the latter was determined by X-ray diffraction analysis. The phytate is completely deprotonated; six phosphate fragments (with atoms P1-P6) are characterized by different spatial arrangements relative to the cyclohexane ring (1a5e conformation), which determines two different types of coordination to the complexing agents-P1 and P3, P4, and P6 have monodentate, while P2 and P5 are bidentately bound to Cu cations. The molecular structure of the anion complex is stabilized by a set of strong intramolecular hydrogen bonds involving coordinated water molecules.
View Article and Find Full Text PDFPLoS One
January 2025
Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
Guanylate binding proteins (GBPs) are large interferon-inducible GTPases, executing essential host defense activities against Toxoplasma gondii, an invasive intracellular apicomplexan protozoan parasite of global importance. T. gondii establishes a parasitophorous vacuole (PV) which shields the parasite from the host's intracellular defense mechanisms.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Sun Yat-Sen University, School of Chemistry and Chemical Engineering, 135 West Xingang Road, 510275, Guangzhou, CHINA.
Metal-organic complexes with long afterglow luminescence have attracted extensive attention due to potential applications in display, sensing and information security. However, most of the metal-organic complex long afterglow materials reported so far are limited to the use of UV light as the excitation source, and the ambiguity of the structure-activity relationship makes the development of metal-organic complexes extremely limited. Herein, a series of metal-organic complexes with ultralong emission lifetime is constructed by coordination assembly of Zn(II) with three isomers.
View Article and Find Full Text PDFChemistry
January 2025
Tianjin Normal University, Chemistry, No393 west Binshui Road, Tianjin, CHINA.
Achieving the adsorptive separation and chromatographic separation of industrially the important chemicals toluene and methylcyclohexane using the same material is a highly desirable goal. We have successfully accomplished this using a fluorinated macrocycle tetrafluoroterphen[3]arene (4FTP3), which was synthesized and used for gas chromatographic separation in our previous work. The macrocycle 4FTP3 permitted the adsorptive separation of toluene from a toluene/methylcyclohexane mixture (1:1, v/v) with a purity of 99.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!