Structural transformations in Cu, Ag, and Au metal nanoclusters.

J Chem Phys

Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, via Eudossiana 18, 00184 Roma, Italy.

Published: September 2023

Finite-temperature structures of Cu, Ag, and Au metal nanoclusters are calculated in the entire temperature range from 0 K to melting using a computational methodology that we proposed recently [M. Settem et al., Nanoscale 14, 939 (2022)]. In this method, Harmonic Superposition Approximation (HSA) and Parallel Tempering Molecular Dynamics (PTMD) are combined in a complementary manner. HSA is accurate at low temperatures and fails at higher temperatures. PTMD, on the other hand, effectively samples the high temperature region and melts. This method is used to study the size- and system-dependent competition between various structural motifs of Cu, Ag, and Au nanoclusters in the size range 1-2 nm. Results show that there are mainly three types of structural changes in metal nanoclusters, depending on whether a solid-solid transformation occurs. In the first type, the global minimum is the dominant motif in the entire temperature range. In contrast, when a solid-solid transformation occurs, the global minimum transforms either completely to a different motif or partially, resulting in the co-existence of multiple motifs. Finally, nanocluster structures are analyzed to highlight the system-specific differences across the three metals.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0159257DOI Listing

Publication Analysis

Top Keywords

metal nanoclusters
12
entire temperature
8
temperature range
8
solid-solid transformation
8
transformation occurs
8
global minimum
8
structural transformations
4
transformations metal
4
nanoclusters
4
nanoclusters finite-temperature
4

Similar Publications

Gold-silver synergism has been well documented in many scientific works dealing with luminescent nanostructures that are exploitable in biomedical and environmental application. Frequently, the ratio of Au : Ag in synthetic mixtures was varied to influence the extent of Au-Ag synergism of the resulting luminescent gold-silver nanoclusters (GSNCs). However, in our approach, a new step, maturing under differing conditions using the same Au : Ag ratio (5 : 1), has been investigated systematically for the very first time.

View Article and Find Full Text PDF

N-heterocyclic carbene (NHC)-protected gold nanoclusters display high stability and high photoluminescence, making them well-suited for fluorescence imaging and photodynamic therapeutic applications. We report herein the synthesis of two bisNHC-protected Au nanoclusters with π-extended aromatic systems. Depending on the position of the π-extended aromatic system, changes to the structure of the ligand shell in the cluster are observed, with the ability to correlate increases in rigidity with increases in fluorescence quantum yield.

View Article and Find Full Text PDF

The use of gold nanoclusters in biomedical applications has been steadily increasing in recent years. However, water solubility is a key factor for these applications, and water-soluble gold nanoclusters are often difficult to isolate and susceptible to exchange or oxidation in vivo. Herein, we report the isolation of N-heterocyclic carbene (NHC)-protected atomically precise gold nanoclusters functionalized with triethylene glycol monomethyl ether groups.

View Article and Find Full Text PDF

Atomically precise nanoclusters (NCs) are promising building blocks for designing materials and interfaces with unique properties. By incorporating heteroatoms into the core, the electronic and magnetic properties of NCs can be precisely tuned. To accurately predict these properties, density functional theory (DFT) is often employed, making the rigorous benchmarking of DFT results particularly important.

View Article and Find Full Text PDF

Understanding the Ag-S interface stability and electrocatalytic activity of CO electroreduction in atomically precise Ag nanoclusters.

Chem Commun (Camb)

January 2025

School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, China.

Elucidating the catalytic properties of metal nanoclusters (NCs) with essentially the same structure but different core metals is of fundamental interest. Our current studies have demonstrated that the thiolated Ag(SR) NC exhibits SR ligand leaching dynamics and electrocatalytic activity in CO reduction distinct from those of its Au(SR) NC structural analogue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!