Coacervation of charged polymer chains has been a topic of major interest in both polymer and biological sciences, as it is a subset of a phenomenon called liquid-liquid phase separation (LLPS). In this process the polymer-rich phase separates from the polymer-lean supernatant while still maintaining its liquid-like properties. LLPS has been shown to play a crucial role in cellular homeostasis by driving the formation of membraneless organelles. It also has the potential to be harnessed to aid in novel therapeutical applications. Recent studies have demonstrated that there is no one simple mechanism which drives LLPS, which is instead a result of the combined effect of electrostatic, dipolar, hydrophobic, and other weak interactions. Using coarse-grained polymer simulations we investigate the relatively unexplored effects of monomer polarizability and spatially varying dielectric constant on LLPS propensity, and these factors affect the properties of the resulting condensates. In order to produce spatial variations in the dielectric constant, all our simulations include explicit solvent and counterions. We demonstrate that polarizability has only a minor effect on the bulk behaviour of the condensates but plays a major role when ion partitioning and microstructure are considered. We observe that the major contribution comes from the nature of the neutral blocks as endowing them with an induced dipole changes their character from hydrophobic to hydrophilic. We hypothesize that the results of this work can aid in guiding future studies concerned with LLPS by providing a general framework and by highlighting important factors which influence LLPS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3sm00706e | DOI Listing |
Protein Sci
January 2025
Departament de Química, Universitat Autònoma de Barcelona, Barcelona, Spain.
Cyclooxygenase-2 (COX-2) plays a crucial role in inflammation and has been implicated in cancer development. Understanding the behavior of COX-2 in different cellular contexts is essential for developing targeted therapeutic strategies. In this study, we investigate the fluorescence spectrum of a fluorogenic probe, NANQ-IMC6, when bound to the active site of human COX-2 in both its monomeric and homodimeric forms.
View Article and Find Full Text PDFJ Phys Chem A
December 2024
College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China.
The packing fashion of an organic molecule in the crystal plays a critical role in the global nonlinear optical (NLO) responses under ambient conditions. To better understand how the crystal packing affects the first hyperpolarizability (β) and achieve efficient NLO material, herein, the three positional isomers (regioisomers) through changing the substituted position of 3-carbazole-pyrazine-based isomers were performed. The phenyl groups with different positions (-, -, and -) of pyrazine, named , , and , are theoretically studied in gas, solvent, and solid states by using the polarizable continuum model and the combined quantum mechanics and molecular mechanics method, respectively.
View Article and Find Full Text PDFChem Rev
December 2024
Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States.
Polymer-based electronic devices are limited by slow transport and recombination of newly separated charges. Built-in electric fields, which arise from compositional gradients, are known to improve charge separation, directional charge transport, and to reduce recombination. Yet, the optimization of these fields through the rational design of polymeric materials is not prevalent.
View Article and Find Full Text PDFHeliyon
November 2024
Department of Physics, Bangladesh University of Engineering and Technology (BUET), Dhaka, 1000, Bangladesh.
Plasma polymerized methyl acrylate (PPMA) thin films were fabricated on a borosilicate glass substrate at a plasma power of 28 W to study nonlinear optical parameters and electronic properties. X-ray Diffraction analysis confirmed the amorphous nature of the PPMA films, while Attenuated total reflectance Fourier transform infrared spectroscopy indicated monomer fragmentation due to plasma polymerization. Field emission scanning electron microscope images of the films display a water wave-like structure.
View Article and Find Full Text PDFJ Phys Chem A
October 2024
Department of Chemistry, University of Graz, Heinrichstraße 28/IV, 8010 Graz, Austria.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!