Tissue Engineering of JAK Inhibitor-Loaded Hierarchically Biomimetic Nanostructural Scaffold Targeting Cellular Senescence for Aged Bone Defect Repair and Bone Remolding.

Adv Healthc Mater

Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai, 200237, China.

Published: December 2023

Cell senescence or apoptosis contributes to self-failure and functional loss in specialized cells, leading to incapacity of the body to repair specific damages. Senescent bone marrow mesenchymal stem cells (BMSCs) lose their proliferative abilities and secrete senescence-associated secretory phenotype (SASP), hindering their participation in bone defect repair. Hence, the effective suppression of cell senescence is crucial to restore the self-repair capacity of body to treat bone defects. Since the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway is associated with SASP secretion, herein, a new strategy is proposed to inhibit this pathway to suppress SASP secretion and enhance osteoblast activity based on a novel hierarchically biomimetic nanostructural electrospun scaffold with JAK inhibitors (JAKi, Ruxolitinib) loaded. As validated by in vitro and in vivo experiments, the JAKi loaded scaffold reduces SASP expression effectively and alleviates senescent cell burden, creating a pro-regeneration microenvironment that enhances osteoblast function and mineralization activity as well as rejuvenating the bone repair capacity. These findings offer insights into the regulatory role of cellular senescence in bone aging and provide a new and effective strategy to treat age-related bone defects by delivery of JAKi to locally aging bone defect sites.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adhm.202301798DOI Listing

Publication Analysis

Top Keywords

bone defect
12
bone
9
hierarchically biomimetic
8
biomimetic nanostructural
8
cellular senescence
8
defect repair
8
cell senescence
8
bone defects
8
sasp secretion
8
tissue engineering
4

Similar Publications

Hyperparathyroidism is a rare entity in pediatrics. It is defined as the increased production of parathyroid hormone. It may be due to a primary defect of the parathyroid glands (primary hyperparathyroidism) or to a compensatory parathyroid hormone production to correct hypocalcemia states of various origins (secondary hyperparathyroidism).

View Article and Find Full Text PDF

Microsurgical Reconstruction of Complex Scalp Defects With Vastus Lateralis Free Flap.

Microsurgery

February 2025

Plastic and Reconstructive Surgery, Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy.

Background: Scalp reconstruction is a challenging field for plastic surgeons. In case of large or complex defects, microsurgical-free flaps are usually required. Reconstructive failure can result in high morbidity and in some cases be life-threatening.

View Article and Find Full Text PDF

Abstract: To evaluate the safety and efficacy of various surgical treatments for long bone defects. Despite numerous observational studies, randomized controlled trials (RCTs), and meta-analyses, the optimal surgical treatment for long bone defects remains undetermined.

Methods: A network meta-analysis (NMA) was conducted.

View Article and Find Full Text PDF

Introduction: The nasoseptal flap (NSF) has become a widely favoured choice for reconstructing skull base defects following the endoscopic endonasal approach (EEA). However, the exposed septal cartilage and bone at the donor site often require an extended duration for secondary healing. This study investigated whether the free middle turbinate (MT) mucosa grafting at the septal donor site could mitigate post-operative nasal morbidity.

View Article and Find Full Text PDF

Distal femoral replacement (DFR) with megaprostheses is a salvage revision total knee arthroplasty (rTKA) procedure indicated in cases with massive bone defects in the distal femur. As long as these implants achieve fixation only in the diaphysis, the high aseptic loosening rate reported in some series is probably related to a lack of rotational stability. Two patients with extensive distal femoral bone defects with preservation of the metaphyseal-diaphyseal junction underwent rTKA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!