Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Mutations in the gene are causative for Duchenne muscular dystrophy (DMD). Antisense oligonucleotide (AON) mediated exon skipping to restore disrupted dystrophin reading frame is a therapeutic approach that allows production of a shorter but functional protein. As DMD causing mutations can affect most of the 79 exons encoding dystrophin, a wide variety of AONs are needed to treat the patient population. Design of AONs is largely guided by trial-and-error, and it is yet unclear what defines the skippability of an exon. Here, we use a library of phosphorodiamidate morpholino oligomer (PMOs) AONs of similar physical properties to test the skippability of a large number of exons. The transcript is non-sequentially spliced, meaning that certain introns are retained longer in the transcript than downstream introns. We tested whether the relative intron retention time has a significant effect on AON efficiency, and found that targeting an out-of-frame exon flanked at its 5'-end by an intron that is retained in the transcript longer ('slow' intron) leads to overall higher exon skipping efficiency than when the 5'-end flanking intron is 'fast'. Regardless of splicing speed of flanking introns, we find that positioning an AON closer to the 5'-end of the target exon leads to higher exon skipping efficiency opposed to targeting an exons 3'-end. The data enclosed herein can be of use to guide future target selection and preferential AON binding sites for both DMD and other disease amenable by exon skipping therapies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10481881 | PMC |
http://dx.doi.org/10.1080/15476286.2023.2254041 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!