A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Identifying potential therapeutic targets of mulberry leaf extract for the treatment of type 2 diabetes: a TMT-based quantitative proteomic analysis. | LitMetric

Background: Mulberry (Morus alba L.) leaf, as a medicinal and food homologous traditional Chinese medicine, has a clear therapeutic effect on type 2 diabetes mellitus (T2DM), yet its underlying mechanisms have not been totally clarified. The study aimed to explore the mechanism of mulberry leaf in the treatment of T2DM through tandem mass tag (TMT)-based quantitative proteomics analysis of skeletal muscle.

Methods: The anti-diabetic activity of mulberry leaf extract (MLE) was evaluated by using streptozotocin-induced diabetic rats at a dose of 4.0 g crude drug /kg p.o. daily for 8 weeks. Fasting blood glucose, body weight, food and water intake were monitored at specific intervals, and oral glucose tolerance test and insulin tolerance test were conducted at the 7th and 8th week respectively. At the end of the experiment, levels of glycated hemoglobin A1c, insulin, free fat acid, leptin, adiponectin, total cholesterol, triglyceride, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol were assessed and the pathological changes of rat skeletal muscle were observed by HE staining. TMT-based quantitative proteomic analysis of skeletal muscle and bioinformatics analysis were performed and differentially expressed proteins (DEPs) were validated by western blot. The interactions between the components of MLE and DEPs were further assessed using molecular docking.

Results: After 8 weeks of MLE intervention, the clinical indications of T2DM such as body weight, food and water intake of rats were improved to a certain extent, while insulin sensitivity was increased and glycemic control was improved. Serum lipid profiles were significantly reduced, and the skeletal muscle fiber gap and atrophy were alleviated. Proteomic analysis of skeletal muscle showed that MLE treatment reversed 19 DEPs in T2DM rats, regulated cholesterol metabolism, fat digestion and absorption, vitamin digestion and absorption and ferroptosis signaling pathways. Key differential proteins Apolipoprotein A-1 (ApoA1) and ApoA4 were successfully validated by western blot and exhibited strong binding activity to the MLE's ingredients.

Conclusions: This study first provided skeletal muscle proteomic changes in T2DM rats before and after MLE treatment, which may help us understand the molecular mechanisms, and provide a foundation for developing potential therapeutic targets of anti-T2DM of MLE.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10476348PMC
http://dx.doi.org/10.1186/s12906-023-04140-3DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
20
mulberry leaf
12
tmt-based quantitative
12
proteomic analysis
12
analysis skeletal
12
potential therapeutic
8
therapeutic targets
8
leaf extract
8
type diabetes
8
quantitative proteomic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!