The ability to sequence movements in response to new task demands enables rich and adaptive behavior. However, such flexibility is computationally costly and can result in halting performances. Practicing the same motor sequence repeatedly can render its execution precise, fast and effortless, that is, 'automatic'. The basal ganglia are thought to underlie both types of sequence execution, yet whether and how their contributions differ is unclear. We parse this in rats trained to perform the same motor sequence instructed by cues and in a self-initiated overtrained, or 'automatic,' condition. Neural recordings in the sensorimotor striatum revealed a kinematic code independent of the execution mode. Although lesions reduced the movement speed and affected detailed kinematics similarly, they disrupted high-level sequence structure for automatic, but not visually guided, behaviors. These results suggest that the basal ganglia are essential for 'automatic' motor skills that are defined in terms of continuous kinematics, but can be dispensable for discrete motor sequences guided by sensory cues.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11187818 | PMC |
http://dx.doi.org/10.1038/s41593-023-01431-3 | DOI Listing |
Eur Eat Disord Rev
January 2025
Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Objective: Anorexia nervosa (AN) is associated with disturbances in reward processing, cognitive control, and body image perception, implicating striatal dysfunction. Evidence suggests that underweight may modulate brain function in AN. We aimed to investigate whole-brain resting-state functional connectivity (rsFC) of the striatum in patients with AN while controlling for the acute effects of underweight.
View Article and Find Full Text PDFBiol Psychiatry
January 2025
MIND Institute and Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, University of California Davis, Sacramento, CA, USA.
Background: Fine motor challenges are prevalent in autistic populations. However, little is known about their neurobiological underpinnings or how their related neural mechanisms are influenced by sex. The dorsal striatum, comprised of the caudate nucleus and putamen, is associated with motor learning and control and may hold critical information.
View Article and Find Full Text PDFNeurobiol Dis
January 2025
Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America. Electronic address:
Aggregation of alpha-synuclein (αsyn) plays an integral role in Parkinson's disease (PD) and Dementia with Lewy bodies (DLB). 14-3-3θ is a highly expressed brain protein with chaperone-like activity that regulates αsyn folding. 14-3-3θ overexpression reduces αsyn aggregation, transmission between cells, and neuronal loss, while 14-3-3 inhibition promotes αsyn pathology.
View Article and Find Full Text PDFDrug Alcohol Depend
February 2025
Department of Psychology, The Pennsylvania State University, University Park, PA, USA.
Aims: Over the recent decades, smoking among women has become an increasingly pressing public health challenge. Mounting evidence suggests that, compared to men, women's smoking is more strongly influenced by habitual responses to sensorimotor cues. To understand the brain mechanisms underlying the cessation challenges commonly reported by women who smoke, the present study used voxel-based morphometry (VBM) to investigate sex-related volumetric differences in the dorsal striatum, a region implicated in habitual substance use behavior, and their associations with self-reported quit interest among daily smoking adults.
View Article and Find Full Text PDFNeuroimage
January 2025
Department of Psychiatry, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!