Alzheimer's disease (AD) is the most prevalent form of dementia, and it displays both clinical and molecular variability. RNA N6-methyladenosine (m6A) regulators are involved in a wide range of essential cellular processes. In this study, we aimed to identify molecular signatures associated with m6A in Alzheimer's disease and use those signatures to develop a predictive model. We examined the expression patterns of m6A regulators and immune features in Alzheimer's disease using the GSE33000 dataset. We examined the immune cell infiltration and molecular groups based on m6A-related genes in 310 Alzheimer's disease samples. The WGCNA algorithm was utilized to determine differently expressed genes within each cluster. After evaluating the strengths and weaknesses of the random forest model, the support vector machine model, the generalized linear model, and eXtreme Gradient Boosting, the best machine model was selected. Methods such as nomograms, calibration curves, judgment curve analysis, and the use of independent data sets were used to verify the accuracy of the predictions made. Alzheimer's disease and non-disease Alzheimer's groups were compared to identify dysregulated m6A-related genes and activated immune responses. In Alzheimer's disease, two molecular clusters linked to m6A were identified. Immune infiltration analysis indicated substantial variation in protection between groups. Cluster 1 included processes like the Toll-like receptor signaling cascade, positive regulation of chromatin binding, and numerous malignancies; cluster 2 included processes like the cell cycle, mRNA transport, and ubiquitin-mediated proteolysis. With a lower residual and root mean square error and a larger area under the curve (AUC = 0.951), the Random forest machine model showed the greatest discriminative performance. The resulting random forest model was based on five genes, and it performed well (AUC = 0.894) on external validation datasets. Accuracy in predicting Alzheimer's disease subgroups was also shown by analyses of nomograms, calibration curves, and decision curves. In this research, we methodically outlined the tangled web of connections between m6A and AD and created a promising prediction model for gauging the correlation between m6A subtype risk and AD pathology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10477294 | PMC |
http://dx.doi.org/10.1038/s41598-023-41129-x | DOI Listing |
Int Psychogeriatr
February 2015
Director National Ageing Research Institute and University of MelbourneProfessor of Ageing and Health, Former Editor in Chief and current Book Review Editor for International Psychogeriatrics, National Ageing Research Institute, Parkville, Victoria, Australia Email:
Sensors (Basel)
December 2024
Faculty of Computer Science, Polish-Japanese Academy of Information Technology, 86 Koszykowa Street, 02-008 Warsaw, Poland.
Neurodegenerative diseases (NDs), such as Alzheimer's disease (AD) and Parkinson's disease (PD), are debilitating conditions that affect millions worldwide, and the number of cases is expected to rise significantly in the coming years. Because early detection is crucial for effective intervention strategies, this study investigates whether the structural analysis of selected brain regions, including volumes and their spatial relationships obtained from regular T1-weighted MRI scans ( = 168, PPMI database), can model stages of PD using standard machine learning (ML) techniques. Thus, diverse ML models, including Logistic Regression, Random Forest, Support Vector Classifier, and Rough Sets, were trained and evaluated.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA.
Mobility tasks like the Timed Up and Go test (TUG), cognitive TUG (cogTUG), and walking with turns provide insights into the impact of Parkinson's disease (PD) on motor control, balance, and cognitive function. We assess the test-retest reliability of these tasks in 262 PD participants and 50 controls by evaluating machine learning models based on wearable-sensor-derived measures and statistical metrics. This evaluation examines total duration, subtask duration, and other quantitative measures across two trials.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281, USA.
Alzheimer's disease (AD) and Alzheimer's Related Dementias (ADRD) are projected to affect 50 million people globally in the coming decades. Clinical research suggests that Mild Cognitive Impairment (MCI), a precursor to dementia, offers a critical window of opportunity for lifestyle interventions to delay or prevent the progression of AD/ADRD. Previous research indicates that lifestyle changes, including increased physical exercise, reduced caloric intake, and mentally stimulating activities, can reduce the risk of MCI.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
The genus (Amaryllidaceae) currently contains 25 plant species naturally occurring in Europe and the Middle East region. These perennial bulbous plants possess well-known medicinal and ornamental qualities. Alkaloid diversity is their most distinctive phytochemical feature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!