AI Article Synopsis

  • Ras proteins are crucial for cell processes and are implicated in cancer; mutations in K-Ras, a Ras isoform, are common in human tumors.
  • A novel ferrocene derivative was tested and found to increase reactive oxygen species (ROS) levels, inhibiting the growth of K-Ras-driven pancreatic and lung cancers by disrupting K-Ras's functions at the plasma membrane.
  • The study highlights the importance of K-Ras's His95 residue, which may be oxidized by ROS, indicating that the redox system affects K-Ras signaling and growth in these cancers.

Article Abstract

Ras proteins are membrane-bound GTPases that regulate essential cellular processes at the plasma membrane (PM). Constitutively active mutations of K-Ras, one of the three Ras isoforms in mammalian cells, are frequently found in human cancers. Ferrocene derivatives, which elevate cellular reactive oxygen species (ROS), have shown to block the growth of non-small cell lung cancers harboring oncogenic mutant K-Ras. Here, we tested a novel ferrocene derivative on the growth of pancreatic ductal adenocarcinoma and non-small cell lung cancer. Our compound, which elevated cellular ROS levels, inhibited the growth of K-Ras-driven cancers, and abrogated the PM binding and signaling of K-Ras in an isoform-specific manner. These effects were reversed upon antioxidant supplementation, suggesting a ROS-mediated mechanism. We further identified that K-Ras His95 residue plays an important role in this process, and it is putatively oxidized by cellular ROS. Together, our study demonstrates that the redox system directly regulates K-Ras/PM binding and signaling via oxidative modification at the His95, and proposes a role of oncogenic mutant K-Ras in the recently described antioxidant-induced growth and metastasis of K-Ras-driven cancers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10477449PMC
http://dx.doi.org/10.26508/lsa.202302094DOI Listing

Publication Analysis

Top Keywords

ferrocene derivative
8
oxidative modification
8
modification his95
8
non-small cell
8
cell lung
8
oncogenic mutant
8
mutant k-ras
8
cellular ros
8
k-ras-driven cancers
8
binding signaling
8

Similar Publications

A ferrocene-catalyzed cyanoalkylsulfonylative radical cascade cyclization of aryl 1,6-diynes using cycloketone oxime esters and DABCO.(SO₂)₂ (DABSO) is reported. The reaction proceeds with notable chemo- and regioselectivity, without requiring additional oxidants or reductants.

View Article and Find Full Text PDF

Supramolecular ionogels enable highly efficient electrochromism.

Mater Horiz

January 2025

College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha, 410082, Hunan, China.

Ionogels are a promising solution to improve the functionality of electrochromic devices (ECDs) by solving issues related to traditional liquid electrolytes, such as volatility, toxicity, and leakage. However, manufacturing ionogels is complicated as it often involves cross-linking polymerization or chemical sol-gel processes, requiring large amounts of inorganic or polymeric gelators. This results in low ionic conductivity and poor ECD performance.

View Article and Find Full Text PDF

Biologically-driven RAFT polymerization-amplified platform for electrochemical detection of antibody drugs.

Talanta

December 2024

Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China. Electronic address:

The individualized administration and pharmacokinetics profiling are integral to the safe use of antibody drugs in immunotherapy. Here, we propose an electrochemical platform for the highly sensitive and selective detection of antibody drugs, taking advantage of the affinity capture by the peptide mimotopes together with the signal amplification by the biologically-driven RAFT polymerization (BDRP). Briefly, the BDRP-based platform involves the capture of antibody drugs by peptide mimotopes, the labeling of multiple reversible addition-fragmentation chain-transfer (RAFT) agents to the glycan chains of antibody drugs, and the BDRP-enabled controlled recruitment of numerous redox labels.

View Article and Find Full Text PDF

Understanding the basic structure of the oxygen-evolving complex (OEC) in photosystem II (PS-II) and the water oxidation mechanism can aid in the discovery of more efficient and sustainable catalysts for water oxidation. In this context, we present evidence of the formation of a [(TPA)Mn(O)(μ-O)Ce(NO)] () complex (TPA = tris(pyridyl-2-methyl)amine) by adding aqueous ceric ammonium nitrate to an acetonitrile solution of the [(TPA)Mn] () complex. This unique intermediate () was analyzed by using various spectroscopic techniques and electrospray ionization mass spectrometry.

View Article and Find Full Text PDF

Recent Catalytic Applications of Ferrocene and Ferrocenium Cations in the Syntheses of Organic Compounds.

Molecules

November 2024

Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, MO 63121, USA.

Ferrocene and its oxidized counterpart, the ferrocenium cation, represent a fascinating class of organometallic compounds with broad utility across various fields, including organic synthesis, pharmaceuticals, and materials science. Over the years, ferrocene, ferrocenium cations, and their derivatives have also gained prominence for their versatility in catalytic processes. This review article offers an overview of the research of the last decade into ferrocene- and ferrocenium-based catalysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!