Background: Vascularization plays an important role in dental and craniofacial regenerations. Human periodontal ligament stem cells (hPDLSCs) are a promising cell source and, when co-cultured with human umbilical vein endothelial cells (hUVECs), could promote vascularization. The objectives of this study were to develop a novel prevascularized hPDLSC-hUVEC-calcium phosphate construct, and investigate the osteogenic and angiogenic efficacy of this construct with human platelet lysate (hPL) in cranial defects in rats for the first time.
Methods: hPDLSCs and hUVECs were co-cultured on calcium phosphate cement (CPC) scaffolds with hPL. Cell proliferation, angiogenic gene expression, angiogenesis, alkaline phosphatase activity, and cell-synthesized minerals were determined. Bone and vascular regenerations were investigated in rat critical-sized cranial defects in vivo.
Results: hPDLSC-hUVEC-CPC-hPL group had 2-fold greater angiogenic expressions and cell-synthesized mineral synthesis than hPDLSC-hUVEC-CPC group (p < 0.05). Microcapillary-like structures were formed on scaffolds in vitro. hPDLSC-hUVEC-CPC-hPL group had more vessels than hPDLSC-hUVEC-CPC group (p < 0.05). In cranial defects in rats, hPDLSC-hUVEC-CPC-hPL group regenerated new bone amount that was 2.1 folds and 4.0 folds, respectively, that of hPDLSC-hUVEC-CPC group and CPC control (p < 0.05). New blood vessel density of hPDLSC-hUVEC-CPC-hPL group was 2 folds and 7.9 folds, respectively, that of hPDLSC-hUVEC-CPC group and CPC control (p < 0.05).
Conclusion: The hPL pre-culture method is promising to enhance bone regeneration via prevascularized CPC. Novel hPDLSC-hUVEC-CPC-hPL prevascularized construct increased new bone formation and blood vessel density by 4-8 folds over CPC control.
Clinical Significance: Novel hPDLSC-hUVEC-hPL-CPC prevascularized construct greatly increased bone and vascular regeneration in vivo and hence is promising for a wide range of craniofacial applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jdent.2023.104690 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!