Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
It can be challenging to accurately estimate the Chlorophyll-a (Chl-a) concentration in inland eutrophic lakes due to lakes' extremely complex optical properties. The Orbita Hyperspectral (OHS) satellite, with its high spatial resolution (10 m), high spectral resolution (2.5 nm), and high temporal resolution (2.5 d), has great potential for estimating the Chl-a concentration in inland eutrophic waters. However, the estimation capability and radiometric performance of OHS have received limited examination. In this study, we developed a new quasi-analytical algorithm (QAA) for estimating Chl-a using OHS images. Based on the optical properties in Dianchi Lake, the ability of OHS to remotely estimate Chl-a was evaluated by comparing the signal-to-noise ratio (SNR) and the noise equivalent of Chl-a (NE). The main findings are as follows: (1) QAA achieved significantly better results than those of the other three QAA models, and the Chl-a estimation model, using QAA, produced robust results with a mean absolute percentage difference (MAPD) of 11.54 %, which was better than existing Chl-a estimation models; (2) The FLAASH (Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes) atmospheric correction model (MAPD = 22.22 %) was more suitable for OHS image compared to the other three atmospheric correction models we tested; (3) OHS had relatively moderate SNR and NE, improving its ability to accurately detect Chl-a concentration and resulting in an average SNR of 59.47 and average NE of 72.86 μg/L; (4) The increased Chl-a concentration in Dianchi Lake was primarily related to the nutrients input, and this had a significant positive correlation with total nitrogen. These findings expand existing knowledge of the capabilities and limitations of OHS in remotely estimating Chl-a, thereby facilitating effective water quality management in eutrophic lake environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.166785 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!