Background: Typical absence seizures (TAS) are seen in idiopathic generalized epilepsy. Electroencephalography (EEG) contributes to syndrome characterization and counseling in an area where genetics does not currently play a significant role. Prominent interictal EEG findings are seen in juvenile absence epilepsy (JAE) and are thus thought to be associated with less favorable outcome in any TAS case despite lack of evidence. Our study evaluates EEG findings and their association with seizure outcomes in children with TAS.
Methods: Retrospective cohort study of 123 children over 10 years with extensive EEG analysis and medical record review. Phone interviews ascertained longer-term outcomes. EEG reviewers were unaware of outcomes.
Results: Total cohort included 123 children with phone review completed in 98. Median follow-up was 5 years 9 months. Seizure freedom was seen in 59% off antiseizure medicines (ASMs). Interictal findings included focal discharges in 29%, fragments of spike-wave (SW) discharges in 82.1%, and generalized interictal discharges in 63.4%. Interictal SW was more likely in those who slept (100%, 18 of 18) versus those who did not (57%, 60 of 105) (P < 0.001). Outcome analysis found no associations between focal or generalized interictal findings and seizure freedom, relapse off ASM, occurrence of other seizure types, or response to first ASM.
Conclusion: Focal and generalized interictal EEG discharges are common in children with TAS and are not associated with poorer outcomes. These interictal findings were traditionally associated with JAE rather than childhood absence epilepsy and were thus believed to be associated with potentially poorer outcome, which is probably not the case.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pediatrneurol.2023.08.004 | DOI Listing |
J Genet
January 2025
1Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia.
The Brownstripe Snapper, (Quoy and Gaimard, 1824) is a commercially important snapper extensively caught in Malaysia. We examined genetic diversity, population connectivity, and historical demographics of the , off the eastern coast of peninsular Malaysia based on an 817 bp region of the mtDNA control region sequences. Maximum likelihood gene trees demonstrated that the populations under study had limited structuring and formed a single panmictic population that lacks support for internal clades.
View Article and Find Full Text PDFFront Physiol
December 2024
Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.
During pregnancy, marked changes in vasculature occur. The placenta is developed, and uteroplacental and fetoplacental circulations are established. These processes may be negatively affected by genetic anomalies, maternal environment (i.
View Article and Find Full Text PDFFront Mol Neurosci
December 2024
UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS- Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto, Porto, Portugal.
Front Aging Neurosci
December 2024
Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, United States.
Background: The 3xTg-AD transgenic mouse model of Alzheimer's disease (AD) is an important tool to investigate the relationship between development of pathological amyloid-β (Aβ) and tau, neuroinflammation, and cognitive impairments. Traditional behavioral tasks assessing aspects of learning and memory, such as mazes requiring spatial navigation, unfortunately suffer from several shortcomings, including the stress of human handling and not probing species-typical behavior. The automated IntelliCage system was developed to circumvent such issues by testing mice in a social environment while measuring multiple aspects of cognition.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
Faculty of Health Sciences, University of Macau, Taipa, Macau.
Ion channels play a crucial role in cardiac functions, and their activities exhibit dynamic changes during heart development. However, the precise function of ion channels in human heart development remains elusive. In this study, we utilized human embryonic stem cells (hESCs) as a model to mimic the process of human embryonic heart development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!