Specific stimuli to plants influence intracellular and intercellular communications, activation of ion channels, gene expression, growth and development. The functional role of self-induced in situ electrical stimuli at the rhizosphere of the plant by placing electrode assembly in a defined circuit mode was studied on the growth and development of Vigna radiata and Cicer arietinum plants. Experiments were designed with three-circuit mode configurational variations (CC-P, OC-P and SC-P) and compared with the relative performance of control system (non-potential). The plants cultivated under the in situ electrical stimuli (low-current) showed a marked influence on growth and photosynthetic performance of the plants. CC-P operation showed improved vegetative growth, characterized by increased roots, shoots and biomass along with accelerated plant growth from seed germination to vegetation, flowering and pod formation leading towards earlier and more robust flowering compared to control system. Plants also showed higher aquaporin gene expression levels in CC-P operation. The control operation showed 10 days additional maturation time compared to CC-P operation. The strategy can be beneficially applied to augment the bioremediation capacity of complex pollutants with reference to phytoremediation or constructed wetland systems where the plant and its roots are the main enabler apart from agriculture applications specific to nursery-raised or transplanted plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioelechem.2023.108550 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!