Most of the research addressing feed efficiency and the microbiota has been conducted in cattle fed grain diets, although cattle evolved to consume forage diets. Our hypothesis was that the bacteria in the rumen and cecum differed in cattle that have a common feed intake but had different ^average daily body weight gains (ADG) on a forage diet. Heifers (n = 134) were 606 ± 1 d of age and weighed 476 ± 3 kg at the start of the 84-d feeding study. Heifers were offered ad libitum access to a totally mixed ration that consisted of 86% ground brome hay, 10% wet distillers grains with solubles, and 4% mineral supplement as dry matter. Feed intake and body weight gain were measured, and gain was calculated. Heifers with the least (n = 8) and greatest (n = 8) ADG within 0.32 SD of the mean daily dry matter intake were selected for sampling. Digesta samples from the rumen and cecum were collected, and subsequent 16S analysis was conducted to identify Amplicon Sequence Variants. There were no differences in Alpha and Beta diversity between ADG classification within sample sites (P > 0.05). Both sample sites contained calculated balances of sister clades using phylogenetic isometric log ratio transferred data that differed across ADG classification. These findings suggest that bacteria did not differ at the community level, but there was structural difference at the clade level.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10552577 | PMC |
http://dx.doi.org/10.1093/jas/skad292 | DOI Listing |
Front Microbiol
December 2024
VERO Program, Texas A&M University, Canyon, TX, United States.
Introduction: The gastrointestinal microbiota profoundly influences the health and productivity of animals. This study aimed to characterize microbial community structures of the mouth, gastrointestinal tract (GIT), and feces of cattle.
Methods: Samples were collected from 18 Akaushi crossbred steers at harvest from multiple locations, including the oral cavity, rumen, abomasum, duodenum, jejunum, ileum, cecum, spiral colon, distal colon, and feces.
BMC Vet Res
December 2024
College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China.
Marbling is a key indicator of the meat quality of ruminants. Gastrointestinal microbiota may regulate the formation of marbling by influencing the nutritional metabolism of animals. This study analyzed the composition and functional differences of microbiota in the rumen and cecum, the differences in volatile fatty acids (VFAs) content in the longissimus thoracis muscle, and the differences in protein abundance in the longissimus thoracis muscle of ruminants with different marbling grades through microbiome-proteome analysis.
View Article and Find Full Text PDFBMC Microbiol
October 2024
College of Animal Science, Guizhou University, Guiyang, 550025, China.
J Dairy Sci
January 2025
Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6B 2P5, Canada. Electronic address:
Although the importance of pH and short-chain fatty acids (SCFA) on rumen development are well-known, their impact on the small and large intestine are unclear. This study investigated how single-dose ruminal infusions with high or low SCFA concentrations and high or low pH affect calves' productivity, as well as physiological parameters associated with hindgut acidosis at 3 time points in 49 d. Holstein bull calves (n = 32) were individually housed and fed milk replacer (900 g/d) twice daily and calf starter and water ad libitum.
View Article and Find Full Text PDFJ Anim Sci
January 2024
Departments of Animal Sciences, North Dakota State University, Fargo, ND 58108-6050, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!