AI Article Synopsis

  • The study aimed to explore high-resolution MRI using hyperpolarized carbon-13 pyruvate for measuring blood flow in the human brain.
  • Researchers used a special imaging technique to gather data from five healthy volunteers and compared new perfusion measurements from pyruvate MRI with those from traditional arterial spin labeling (ASL).
  • Results showed a significant positive correlation between pyruvate and ASL measurements, suggesting that hyperpolarized pyruvate MRI can effectively evaluate brain metabolism and blood flow simultaneously.

Article Abstract

Purpose: To investigate high-resolution hyperpolarized (HP) C pyruvate MRI for measuring cerebral perfusion in the human brain.

Methods: HP [1- C]pyruvate MRI was acquired in five healthy volunteers with a multi-resolution EPI sequence with 7.5 × 7.5 mm resolution for pyruvate. Perfusion parameters were calculated from pyruvate MRI using block-circulant singular value decomposition and compared to relative cerebral blood flow calculated from arterial spin labeling (ASL). To examine regional perfusion patterns, correlations between pyruvate and ASL perfusion were performed for whole brain, gray matter, and white matter voxels.

Results: High resolution 7.5 × 7.5 mm pyruvate images were used to obtain relative cerebral blood flow (rCBF) values that were significantly positively correlated with ASL rCBF values (r = 0.48, 0.20, 0.28 for whole brain, gray matter, and white matter voxels respectively). Whole brain voxels exhibited the highest correlation between pyruvate and ASL perfusion, and there were distinct regional patterns of relatively high ASL and low pyruvate normalized rCBF found across subjects.

Conclusion: Acquiring HP C pyruvate metabolic images at higher resolution allows for finer spatial delineation of brain structures and can be used to obtain cerebral perfusion parameters. Pyruvate perfusion parameters were positively correlated to proton ASL perfusion values, indicating a relationship between the two perfusion measures. This HP C study demonstrated that hyperpolarized pyruvate MRI can assess cerebral metabolism and perfusion within the same study.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10543485PMC
http://dx.doi.org/10.1002/mrm.29844DOI Listing

Publication Analysis

Top Keywords

cerebral perfusion
12
pyruvate mri
12
perfusion parameters
12
asl perfusion
12
perfusion
11
pyruvate
10
high resolution
8
[1- c]pyruvate
8
c]pyruvate mri
8
hyperpolarized pyruvate
8

Similar Publications

Background: Non-response to cardiac resynchronization therapy (CRT) is an important issue in the treatment of heart failure with reduced ejection fraction (HFrEF) and non-left bundle branch block (LBBB). Electrocardiogram-gated myocardial perfusion single-photon emission computed tomography imaging (G-MPI SPECT) is typically used to assess left ventricular (LV) dyssynchrony. This study aimed to determine whether G-MPI parameters are associated with non-responsiveness to CRT.

View Article and Find Full Text PDF

Background: Genome-wide association studies (GWAS) identified the ATP binding cassette subfamily A member 7 (ABCA7) gene as increasing risk for Alzheimer's disease (AD). ABC proteins transport various molecules across extra and intra-cellular membranes. ABCA7 is part of the ABC1 subfamily and is expressed in brain cells including neurons, astrocytes, microglia, endothelial cells and pericytes.

View Article and Find Full Text PDF

Background: Cerebral microvascular dysfunction and nitro-oxidative stress are present in patients with Alzheimer's disease (AD) and may contribute to disease progression and severity. A pro-nitro-oxidative environment can lead to post-translational modifications of ion channels central to microvascular regulation in the brain, including the large conductance Ca-activated K channels (BK). Nitro-oxidative modulation of BK can resulting in decreased activity and vascular hyper-contractility, thus compromising neurovascular regulation.

View Article and Find Full Text PDF

Background: We previously discovered that Aβ accumulates in the cortical/supranuclear region of the lens in people with Alzheimer's Disease (AD) (Goldstein et al., 2003) and Down Syndrome (DS; (Moncaster et al., 2010).

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.

Background: Glaucoma is characterized by progressive optic nerve degeneration that results in irreversible blindness, and it can be considered a neurodegenerative disorder of both the eye and the brain. Increasing evidence suggest that glaucoma shares some common neurodegenerative pathways with Frontotemporal Lobar Degeneration (FTLD), Amyotrophic Lateral Sclerosis (ALS), and Alzheimer's Disease (AD) among others. Interestingly, a recent study revealed the presence of abnormal TAR DNA-binding protein 43 (TDP-43) inclusions and aggregates in retinal ganglion cells and other retinal cell types in FTLD-TDP patients; however, the significance of this pathology and its impact on retinal function and optical nerve integrity is unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!