A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session9j3okn33lhet3qu80m71jgfooiu6fp0m): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: Network is unreachable

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dynamic Loss for Robust Learning. | LitMetric

Dynamic Loss for Robust Learning.

IEEE Trans Pattern Anal Mach Intell

Published: December 2023

Label noise and class imbalance are common challenges encountered in real-world datasets. Existing approaches for robust learning often focus on addressing either label noise or class imbalance individually, resulting in suboptimal performance when both biases are present. To bridge this gap, this work introduces a novel meta-learning-based dynamic loss that adapts the objective functions during the training process to effectively learn a classifier from long-tailed noisy data. Specifically, our dynamic loss consists of two components: a label corrector and a margin generator. The label corrector is responsible for correcting noisy labels, while the margin generator generates per-class classification margins by capturing the underlying data distribution and the learning state of the classifier. In addition, we employ a hierarchical sampling strategy that enriches a small amount of unbiased metadata with diverse and challenging samples. This enables the joint optimization of the two components in the dynamic loss through meta-learning, allowing the classifier to effectively adapt to clean and balanced test data. Extensive experiments conducted on multiple real-world and synthetic datasets with various types of data biases, including CIFAR-10/100, Animal-10N, ImageNet-LT, and Webvision, demonstrate that our method achieves state-of-the-art accuracy.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TPAMI.2023.3311636DOI Listing

Publication Analysis

Top Keywords

dynamic loss
16
robust learning
8
label noise
8
noise class
8
class imbalance
8
label corrector
8
margin generator
8
dynamic
4
loss robust
4
label
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!