AI Article Synopsis

Article Abstract

Monitoring the healthy development of a fetus requires accurate and timely identification of different maternal-fetal structures as they grow. To facilitate this objective in an automated fashion, we propose a deep-learning-based image classification architecture called the COMFormer to classify maternal-fetal and brain anatomical structures present in 2-D fetal ultrasound (US) images. The proposed architecture classifies the two subcategories separately: maternal-fetal (abdomen, brain, femur, thorax, mother's cervix (MC), and others) and brain anatomical structures [trans-thalamic (TT), trans-cerebellum (TC), trans-ventricular (TV), and non-brain (NB)]. Our proposed architecture relies on a transformer-based approach that leverages spatial and global features using a newly designed residual cross-variance attention block. This block introduces an advanced cross-covariance attention (XCA) mechanism to capture a long-range representation from the input using spatial (e.g., shape, texture, intensity) and global features. To build COMFormer, we used a large publicly available dataset (BCNatal) consisting of 12 400 images from 1792 subjects. Experimental results prove that COMFormer outperforms the recent CNN and transformer-based models by achieving 95.64% and 96.33% classification accuracy on maternal-fetal and brain anatomy, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TUFFC.2023.3311879DOI Listing

Publication Analysis

Top Keywords

maternal-fetal brain
12
brain anatomy
8
cross-covariance attention
8
brain anatomical
8
anatomical structures
8
proposed architecture
8
global features
8
maternal-fetal
5
brain
5
comformer
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!