Introduction: Direct printing of clear aligners could be the next paradigm shift in modern orthodontics and can potentially overcome the limitation of the indirect production method. This study investigated the effects of 1 week of intraoral usage on the surface roughness parameters of directly printed aligners (DPAs) and commercially produced Invisalign aligners compared with their unused control counterparts using confocal laser scanning microscopy.

Methods: The study consisted of 4 groups with 34 samples per group. Unused control aligners were allocated to the control groups (DP-Ctr and INV-Ctr). Sixty-eight patients undergoing clear aligner therapy were allocated to group DP-Clin (patients in therapy using DPAs made from TC-85 DAC resin) and group INV-Clin (patients provided with Invisalign aligners). After 1 week of intraoral usage, the aligners were retrieved from the patients in groups DP-Clin and INV-Clin. Samples were made from the buccal surface of the maxillary right central incisor of each aligner and underwent surface roughness and porosity measuring using confocal laser scanning microscopy. The arithmetic mean deviation of the profile, root mean square deviation, maximum peak height, maximum valley depth, maximum height difference among the highest peak and deepest valley, void volume, and void count were measured. Descriptive analysis and median (quantile) regression models were used for data analysis of this experiment.

Results: One week of intraoral usage significantly increased the surface roughness and porosity of DPAs. In contrast, a significant reduction in the surface roughness and porosity parameters of Invisalign aligners was recorded after intraoral service.

Conclusions: This study suggests an increase in the surface roughness and surface porosity of DPAs following 1 week of intraoral usage, which might lead to an increase in bacterial adhesion and biofilm formation in these aligners.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajodo.2023.07.013DOI Listing

Publication Analysis

Top Keywords

surface roughness
24
week intraoral
20
intraoral usage
20
roughness porosity
16
invisalign aligners
16
aligners
9
porosity parameters
8
parameters directly
8
directly printed
8
aligners week
8

Similar Publications

The lateral flow assay is a strip-based analytical method for the portable and convenient detection of analytes of interest. It has the advantages of visual observation, autonomous sample flow, fast coloration time, minimal tedious operation procedures, and reliance on specialized instruments. However, the rough surface of the nitrocellulose membrane renders it difficult for the immobilized nucleic acids to remain in an ordered arrangement, and the immobilized nucleic acids are also liable to be digested in a complex matrix, inducing limited sensitivity and anti-interference.

View Article and Find Full Text PDF

Aim: The aim of this systematic review was to evaluate the effect of build orientation on the mechanical and physical properties of additively manufactured resin using digital light processing (DLP).

Background: The properties of 3D-printed materials are influenced by various factors, including the type of additive manufacturing (AM) system and build orientation. There is a scarcity of literature on the effect of build orientation on the mechanical and physical properties of additively manufactured resins using DLP technology in dentistry.

View Article and Find Full Text PDF

Evaluating Cost-effectiveness and Mixing Efficacy for Elastomeric and Temporary Restorative Material Using Two Mixing Tips: A SEM-EDS Analysis.

J Contemp Dent Pract

September 2024

Department of Prosthodontics and Crown & Bridge, Bharati Vidyapeeth Deemed to be University, Dental College and Hospital, Pune, Maharashtra, India, ORCID: https://orcid.org/0009-0008-7338-1699.

Aim: This study aimed to compare the mixing efficacy and cost-effectiveness of new T-mixer tips against the standard double helical tips for a light-body elastomeric impression and a temporary/interim restorative material using a scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy.

Methodology: Automixed samples ( = 16) were divided into four groups of four samples each: Samples that were mixed with Helical tip for elastomer, T-mixer tip for elastomer, Helical tip for interim restorative material, and T-mixer tip for interim restorative material. These samples were then evaluated for SEM analysis.

View Article and Find Full Text PDF

Surface Modifications and Antifungal Efficacy of Origanum Oil Incorporation in Denture-based Materials: An Study.

J Contemp Dent Pract

September 2024

Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil; Department of Dentistry, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands, ORCID: https://orcid.org/0000-0002-5166-8233.

Aim: This study aimed to assess if the addition of origanum oil to denture materials could decrease microorganisms counts and biofilm formation without changing their mechanical/surface properties.

Materials And Methods: A total of 66 resilient denture liner discs (SoftConfort, Dencril Comércio de Plásticos Ltda, SP, Brazil) were prepared with fixed dimensions of 10 × 3 mm for biofilm assay ( = 36) and 12 × 2 mm for sorption-solubility tests ( = 30) containing three oil concentrations - 0, 2.5 and 5%, thereby = 12 per each group samples for biofilm assay and = 10 per each group for sorption-solubility test respectively.

View Article and Find Full Text PDF

This study investigates the optimization of cutting conditions for machining titanium alloy (Ti-6Al-4V) using Response Surface Methodology (RSM), with the goal of minimizing tool-chip interface temperature and surface roughness. The research focuses on key cutting parameters to investigate the most effective combinations for enhancing surface finish and reducing thermal impact during machining. The present study deals with the dry turning of Ti-6Al-4V alloy with carbide alloy inserts in a way to utilize the Analysis of Variance (ANOVA) to develop predictive models for minimum surface roughness and optimum temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!