Morphogen gradients impart positional information to cells in a homogenous tissue field. Fgf8a, a highly conserved growth factor, has been proposed to act as a morphogen during zebrafish gastrulation. However, technical limitations have so far prevented direct visualization of the endogenous Fgf8a gradient and confirmation of its morphogenic activity. Here, we monitor Fgf8a propagation in the developing neural plate using a CRISPR/Cas9-mediated EGFP knock-in at the endogenous fgf8a locus. By combining sensitive imaging with single-molecule fluorescence correlation spectroscopy, we demonstrate that Fgf8a, which is produced at the embryonic margin, propagates by diffusion through the extracellular space and forms a graded distribution towards the animal pole. Overlaying the Fgf8a gradient curve with expression profiles of its downstream targets determines the precise input-output relationship of Fgf8a-mediated patterning. Manipulation of the extracellular Fgf8a levels alters the signaling outcome, thus establishing Fgf8a as a bona fide morphogen during zebrafish gastrulation. Furthermore, by hindering Fgf8a diffusion, we demonstrate that extracellular diffusion of the protein from the source is crucial for it to achieve its morphogenic potential.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10565248PMC
http://dx.doi.org/10.1242/dev.201559DOI Listing

Publication Analysis

Top Keywords

endogenous fgf8a
12
fgf8a gradient
12
morphogen zebrafish
12
zebrafish gastrulation
12
fgf8a
10
real-time monitoring
4
monitoring endogenous
4
gradient attests
4
attests role
4
morphogen
4

Similar Publications

The growth factor Fgf8a has been suggested to act as a morphogen during zebrafish gastrulation, spreading from a localized source to form a concentration gradient and impart positional information to cells along a tissue field. In a new paper in Development, Michael Brand and colleagues directly visualize the endogenous Fgf8a gradient in the developing zebrafish embryo. We caught up with the first author Rohit Krishnan Harish, and his PhD supervisor Michael Brand, Professor at the Center for Regenerative Therapies (CRTD) at TU Dresden.

View Article and Find Full Text PDF

Morphogen gradients impart positional information to cells in a homogenous tissue field. Fgf8a, a highly conserved growth factor, has been proposed to act as a morphogen during zebrafish gastrulation. However, technical limitations have so far prevented direct visualization of the endogenous Fgf8a gradient and confirmation of its morphogenic activity.

View Article and Find Full Text PDF

Proteoglycans (PGs) modulate numerous signaling pathways during development through binding of their glycosaminoglycan (GAG) side chains to various signaling molecules, including fibroblast growth factors (FGFs). A majority of PGs possess two or more GAG side chains, suggesting that GAG multivalency is imperative for biological functions in vivo. However, only a few studies have examined the biological significance of GAG multivalency.

View Article and Find Full Text PDF

In vertebrate development, the body plan is determined by primordial morphogen gradients that suffuse the embryo. Retinoic acid (RA) is an important morphogen involved in patterning the anterior-posterior axis of structures, including the hindbrain and paraxial mesoderm. RA diffuses over long distances, and its activity is spatially restricted by synthesizing and degrading enzymes.

View Article and Find Full Text PDF

The neural crest (NC) comprises a transient and multipotent embryonic cell population, which gives rise to a wide variety of cell types, including craniofacial cartilage, melanocytes, and neurons and glia of the peripheral nervous system. The NC is induced by the integrated action of Wnt, FGF, and BMP signaling, and its cell fates are subsequently specified by a genetic cascade of specific transcription factors. Here we describe a critical role of AWP1 in NC induction during Xenopus early development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!