Temperature change affects biological systems in multifaceted ways, including the alteration of species interaction strengths, with implications for the stability of populations and communities. Temperature-dependent changes to antipredatory responses are an emerging mechanism of destabilization and thus there is a need to understand how prey species respond to predation pressures in the face of changing temperatures. Here, using ciliate protozoans, we assess whether temperature can alter the strength of phenotypic antipredator responses in a prey species and whether this relationship depends on the predator's hunting behavior. We exposed populations of the ciliate to either (i) a sit-and-wait generalist predator () or (ii) a specialized active swimmer predator () across two different temperature regimes (15 and 25°C) to quantify the temperature dependence of antipredator responses over a 24-h period. We utilized a novel high-throughput automated robotic monitoring system to track changes in the behavior (swimming speed) and morphology (cell size) of at frequencies and resolutions previously unachievable by manual sampling. The change in swimming speed through the 24 h differed between the two temperatures but was not altered by the presence of the predators. In contrast, showed a substantial temperature-dependent morphological response to the presence of (but not ), changing cell shape toward a more elongated morph at 15°C (but not at 25°C). Our findings suggest that temperature can have strong effects on prey morphological responses to predator presence, but that this response is potentially dependent on the predator's feeding strategy. This suggests that greater consideration of synergistic antipredator behavioral and physiological responses is required in species and communities subject to environmental changes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10468988 | PMC |
http://dx.doi.org/10.1002/ece3.10474 | DOI Listing |
Oecologia
January 2025
Tomakomai Experimental Forest, Field Science Center for Northern Biosphere, Hokkaido University, Takaoka, Tomakomai, Hokkaido, 053-0035, Japan.
Alien species can influence populations of native species through individual-level effects such as predation, competition, and poisoning. For alien species that possess strong defensive chemicals, poisoning is one of the most powerful mechanisms of individual-level effects on native biota. Although toxic alien species could potentially negatively affect survival (lethal effects) or life history traits (sub-lethal effects) of native predators via poisoning, previous studies have mainly focused on acute lethal effects.
View Article and Find Full Text PDFProc Biol Sci
January 2025
Nepal Zoological Society, Kirtipur, Kathmandu, Nepal.
Understanding factors influencing the spatio-temporal patterns of apex predators is prerequisite for their conservation. We studied space use and diel activity of tigers () in response to prey availability and anthropogenic activities with trail cameras in Nepal during December 2022-March 2023. We used hierarchical occupancy models to evaluate how prey availability (space use of prey species) and anthropogenic activities (number of humans and livestock) contributed to the tigers' space use, while accounting for landscape effects on their detection probability.
View Article and Find Full Text PDFProc Biol Sci
January 2025
Department of Biology and Center for Stable Isotopes, University of New Mexico, Albuquerque, NM, USA.
Retrospective datasets offer essential context for conservation by revealing species' ecological roles before industrial-era human impacts. We analysed isotopic compositions of pre-industrial and modern sea otters () to reconstruct pre-extirpation ecology and offer insights for management. Our study focuses on southeast Alaska (SEAK), where sea otters are recolonizing, and northern Oregon, where translocations are being considered.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Department of Biology, United Arab Emirates University, Al Ain 15551, United Arab Emirates; Department of Science, The Natural History Museum, Cromwell Road, South Kensington, London SW75BD, UK.
Microplastic pollution poses a significant threat to coastal ecosystems worldwide. Despite its widespread occurrence, knowledge on the prevalence and fate of microplastics across food webs is limited. To bridge this gap, we conducted an extensive study on microplastic contamination in mudflats, mangroves, and sand beaches being key habitats for wintering shorebirds on the west coast of India.
View Article and Find Full Text PDFPLoS One
January 2025
Alaska Science Center, U.S. Geological Survey, Anchorage, AK, United States of America.
Quantitative fatty acid signature analysis (QFASA) is a common method of estimating the composition of prey species in the diets of consumers from polar and temperate ecosystems in which lipids are an important source of energy. A key characteristic of QFASA is that the large number of fatty acids that typically comprise lipids permits the dietary contributions of a correspondingly large number of prey types to be estimated. Several modifications to the original QFASA methods have been suggested in the literature and a significant extension of the original model published in 2017 allows simultaneous estimation of both diet proportions and calibration coefficients, which are metabolic constants in the model whose values must otherwise be estimated in independent feeding experiments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!