A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Opportunities and challenges for monitoring a recolonizing large herbivore using citizen science. | LitMetric

Monitoring is a prerequisite for evidence-based wildlife management and conservation planning, yet conventional monitoring approaches are often ineffective for species occurring at low densities. However, some species such as large mammals are often observed by lay people and this information can be leveraged through citizen science monitoring schemes. To ensure that such wildlife monitoring efforts provide robust inferences, assessing the quantity, quality, and potential biases of citizen science data is crucial. For Eurasian moose (), a species currently recolonizing north-eastern Germany and occurring in very low numbers, we applied three citizen science tools: a mail/email report system, a smartphone application, and a webpage. Among these monitoring tools, the mail/email report system yielded the greatest number of moose reports in absolute and in standardized (corrected for time effort) terms. The reported moose were predominantly identified as single, adult, male individuals, and reports occurred mostly during late summer. Overlaying citizen science data with independently generated habitat suitability and connectivity maps showed that members of the public detected moose in suitable habitats but not necessarily in movement corridors. Also, moose detections were often recorded near roads, suggestive of spatial bias in the sampling effort. Our results suggest that citizen science-based data collection can be facilitated by brief, intuitive digital reporting systems. However, inference from the resulting data can be limited due to unquantified and possibly biased sampling effort. To overcome these challenges, we offer specific recommendations such as more structured monitoring efforts involving the public in areas likely to be roamed by moose for improving quantity, quality, and analysis of citizen science-based data for making robust inferences.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10474824PMC
http://dx.doi.org/10.1002/ece3.10484DOI Listing

Publication Analysis

Top Keywords

citizen science
20
science monitoring
8
occurring low
8
monitoring efforts
8
robust inferences
8
quantity quality
8
science data
8
tools mail/email
8
mail/email report
8
report system
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!