Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Keystroke dynamics can valuably contribute to the development of intelligent authentication systems by enabling a single and continuous authentication process in a passive and non-intrusive manner by continuously verifying a user's identity. This work describes the KeyRecs dataset, which contains fixed-text and free-text samples of user typing behavior and demographic information of the participants age, gender, handedness, and nationality. The keystroke data was obtained from 99 participants of various nationalities who completed password retype and transcription exercises. The recorded samples consist of inter-key latencies computed in a digraph fashion measuring the time between each key press and release during an exercise. KeyRecs can be leveraged to improve the recognition of authorized users and prevent unauthorized access in biometric authentication software.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10474054 | PMC |
http://dx.doi.org/10.1016/j.dib.2023.109509 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!