Osteosarcoma is the most common primary malignant bone tumor with a high risk of metastasis and recurrence. Metabolic reprogramming is a hallmark of osteosarcoma and other cancers and is associated with genetic and epigenetic alterations. RUNX2 is an important transcription factor for osteoblastic differentiation, and aberrant expression of the gene contributes to the development and progression of osteosarcoma. To identify the effects of RUNX2 silencing on transcriptomic and metabolomic profiles in osteosarcomas, we generated SJSA-1 osteosarcoma cells stably expressing RUNX2 shRNA and SJSA-1 cells stably expressing scramble shRNA and analyzed transcriptome and metabolome profiles in the two cell types using Illumina NovaSeq 6000 and ultrahigh-performance liquid chromatography coupled with time-of-flight mass spectrometry, respectively. The datasets can be used by researchers to identify novel targets of RUNX2 and elucidate the role and underlying mechanism of RUNX2 in osteosarcoma pathogenesis and metabolic reprogramming.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10470355 | PMC |
http://dx.doi.org/10.1016/j.dib.2023.109500 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!