A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Investigation on Ammonia-Biodiesel Fueled RCCI Combustion Engine Using a Split Injection Strategy. | LitMetric

Advanced combustion concepts in compression ignition are emerging as one of the most promising solutions to reduce nitrogen oxides (NO) and particle emissions without sacrificing fuel efficiency. Among many advanced combustion concepts, reactive controlled compression ignition (RCCI) can achieve a wider working range. In this study, to implement RCCI operation, ammonia gas is introduced through the manifold as a low-reactive fuel, and biodiesel is injected directly as a high-reactivity fuel with a 40:60 energy ratio. The effect of biodiesel split ratio in a split injection strategy (pre- and main injections) is examined under varied load conditions, and the results are compared with ammonia/biodiesel single injection. Results indicate that the use of the 45% biodiesel split ratio at full load boosts the peak in-cylinder pressure and heat release rate and shifts the peak occurrence toward the top dead center (TDC). An increase in brake thermal efficiency (BTE) to 36.22% and reduced brake specific energy consumption (BSEC) to 8.75 MJ/kWh are 12.33% higher and 19.31% lower than ammonia/biodiesel single injection. Emissions of HC, CO, and smoke opacity were reduced to 50 ppm, 0.098% vol, and 15.6%, which are 34.21, 39.13, and 33.89% lower, while the emission of NO was increased to 615 ppm, which is 36.06% higher than the single-injection ammonia/biodiesel RCCI combustion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10468844PMC
http://dx.doi.org/10.1021/acsomega.3c02641DOI Listing

Publication Analysis

Top Keywords

rcci combustion
8
split injection
8
injection strategy
8
advanced combustion
8
combustion concepts
8
compression ignition
8
biodiesel split
8
split ratio
8
ammonia/biodiesel single
8
single injection
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!