Objective: To better understand the microbial profile of complicated parapneumonic effusions and empyema, and to evaluate whether antimicrobial selection would differ if guided by targeted metagenomic sequencing (tMGS) conventional cultures (CCs) alone.
Patients And Methods: We analyzed the pleural fluid of a cohort of 47 patients undergoing thoracentesis from January 1, 2017 to August 31, 2019, to characterize their microbial profile. All samples underwent 16S ribosomal ribonucleic acid gene polymerase chain reaction, followed by tMGS.
Results: Pleural space infection was deemed clinically present in 20 of the 47 (43%) participants. Of those, n=7 (35%) had positive pleural fluid cultures and n=14 (70%) had positive tMGS results. The organisms identified by tMGS were concordant with CCs; however, tMGS detected additional bacterial species over CCs alone. and were the most common organisms identified, with identified in 5 patients Polymicrobial infections were found in 6 of the 20 patients, with anaerobes being the most common organisms identified in these cases.
Conclusion: and were the most common organisms identified in infected pleural fluid. Anaerobes were common in polymicrobial infections. When compared with CCs, tMGS had higher sensitivity than CCs. Targeted metagenomic sequencing identified additional organisms, not identified by CCs, with associated potential management implications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10474564 | PMC |
http://dx.doi.org/10.1016/j.mayocpiqo.2023.07.010 | DOI Listing |
Appl Biochem Biotechnol
January 2025
Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan, 31460, Republic of Korea.
Antarctic organisms are known for producing unique secondary metabolites, and this study specifically focuses on the less-explored metabolites of the moss Warnstorfia fontinaliopsis. To evaluate their potential bioactivity, we extracted secondary metabolites using four different solvents and identified significant lipase inhibitory activity in the methanol extract. Non-targeted metabolomic analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS) on this extract predicted the presence of 12 compounds, including several not previously reported in mosses.
View Article and Find Full Text PDFCurr Gastroenterol Rep
December 2025
Division of Pulmonary, Critical Care, and Sleep Medicine, Medical College of Wisconsin, 8701 West Watertown Plank Road, 8th Floor: HUB for Collaborative Medicine, Milwaukee, WI, 53226, USA.
Purpose Of Review: The purpose of this narrative review is to describe the mechanisms for gut dysfunction during critical illness, outline hypotheses of gut-derived inflammation, and identify nutrition and non-nutritional therapies that have direct and indirect effects on preserving both epithelial barrier function and gut microbiota during critical illness.
Recent Findings: Clinical and animal model studies have demonstrated that critical illness pathophysiology and interventions breach epithelial barrier function and convert a normally commensal gut microbiome into a pathobiome. As a result, the gut has been postulated to be the "motor" of critical illness and numerous hypotheses have been put forward to explain how it contributes to systemic inflammation and drives multiple organ failure.
Curr Res Transl Med
January 2025
Department of Research and Innovation, Medway NHS Foundation Trust, Gillingham ME7 5NY, United Kingdom; Faculty of Medicine, Health and Social Care, Canterbury Christ Church University, United Kingdom.
This narrative review examines the transformative role of Artificial Intelligence (AI) and Machine Learning (ML) in organ retrieval and transplantation. AI and ML technologies enhance donor-recipient matching by integrating and analyzing complex datasets encompassing clinical, genetic, and demographic information, leading to more precise organ allocation and improved transplant success rates. In surgical planning, AI-driven image analysis automates organ segmentation, identifies critical anatomical features, and predicts surgical outcomes, aiding pre-operative planning and reducing intraoperative risks.
View Article and Find Full Text PDFBJS Open
December 2024
Department of Cardiothoracic Surgery, Liverpool Heart and Chest Hospital, Liverpool, UK.
Background: Acute type A aortic dissection is a life-threatening clinical emergency that necessitates immediate surgical intervention with an estimated mortality rate of approximately 1-2% per hour. When complicated by malperfusion, the perioperative mortality rate is reported to be increased by up to 39%. Malperfusion can affect many vascular beds with varying incidence and severity, resulting in coronary, cerebral, visceral, peripheral, renal or spinal malperfusion.
View Article and Find Full Text PDFAnticancer Drugs
January 2025
Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) effectively treat EGFR-mutant lung adenocarcinoma, demonstrating initial efficacy but eventually leading to acquired resistance. Small cell transformation is a rare resistance mechanism to EGFR-TKIs in lung adenocarcinoma, which can complicate clinical diagnosis and treatment. We present a patient with lung adenocarcinoma who underwent a prior pneumonectomy and adjuvant chemotherapy and was treated with osimertinib after the recurrence of lung cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!