Assessing the impact of draught load pulling on welfare in equids.

Front Vet Sci

Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China.

Published: August 2023

About 112 million working equids are the source of income for 600 million people globally. Many equids are used for pulling loads (up to 15,000 kg per day) to transport goods. Most of them are associated with brick kilns, mining, and agriculture industries in developing countries. They may suffer from welfare issues such as overloading, being beaten, and being forced to work for long periods. These issues may occur due to a poor understanding of load-pulling equids. Understanding their capabilities and the elements that influence them is critical for efficient performance and welfare. The measurement of stride characteristics and gait kinematics can reveal loading adaptations and help identify loading limitations. It is known that both loading and fatigue change the locomotor patterns of load-pulling horses. Heart rate is a stress quantifying metric and an important representative of the speed of work and draught force. Heart rate variability is a regularly used statistic to quantify a physiological response to stresses, but it has never been used for load-pulling equids. Changes in blood lactate, nitrogen, oxygen, and carbon dioxide contents are reliable biochemical indicators of the effects of load pulling. Changes in plasma cortisol levels reflect the intensity of exercise and stress levels in horses while pulling a load. However, eye blink rate is a cheap, simple, and immediate indicator of acute equine stress, and we suggest it may be used to aid in load-pulling equine welfare assessment. However, further research is needed for a standardized and evidence-based draught load pulling capacity of working horses, mules, and donkeys.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10469728PMC
http://dx.doi.org/10.3389/fvets.2023.1214015DOI Listing

Publication Analysis

Top Keywords

load pulling
12
draught load
8
load-pulling equids
8
heart rate
8
pulling
5
equids
5
assessing impact
4
impact draught
4
load
4
welfare
4

Similar Publications

The purpose of this study was to determine whether the intermittent adaptation to pelvis perturbation load enhances retention of improved weight transfer and generalization of motor skills from treadmill to overground walking, compared with effects of the continuous adaptation. Fifteen individuals with incomplete SCI participated in two experimental sessions. Each session consisted of (1) perturbed treadmill walking with either intermittent (i.

View Article and Find Full Text PDF

Objective: The effect of shoulder-belt load-limiting was evaluated on right-front passenger kinematics in 90 km/h oblique OMDB (offset moving deformable barrier) impacts and compared to kinematics in 56 km/h NCAP crash tests. The study focused on the influence of webbing pulling out of the retractor increasing forward excursion of the upper torso and head.

Methods: 18 OMDB crash tests were conducted by NHTSA at 90 km/h.

View Article and Find Full Text PDF

Rear passenger restraint in frontal NCAP tests compared to the right-front passenger.

Traffic Inj Prev

November 2024

ProBiomechanics LLC, Bloomfield Hills, Michigan.

Objective: This study compared kinematic and biomechanic responses of the 5 female Hybrid III in the right-rear and right-front passenger seats in frontal NCAP tests with 2015-16 MY vehicles. It focused on the lap-shoulder belt restraint of the rear passenger.

Methods: Eleven frontal NCAP tests were conducted by NHTSA at 56 km/h with a lap-shoulder belted 5 Hybrid III dummy in the right-rear and right-front seats.

View Article and Find Full Text PDF

Purpose: To biomechanically compare primary medial patellofemoral ligament (MPFL) repair (MPFLr) augmented with a reinforced bioinductive implant (RBI) to the native MPFL ligament and a semitendinosus (semi-T) MPFL reconstruction (MPFLR) at time zero.

Methods: Four fresh-frozen matched pair cadavers (8 knees) were used to biomechanically compare the native MPFL to augmented MPFLr (n = 4) and semi-T MPFLR (n = 4). The native MPFL (n = 8) was isolated, preserving the femoral and patellar attachments, and pulled to failure.

View Article and Find Full Text PDF

Objectives: Grain storage facility entrapments continue to be of concern in the agricultural industry, with nearly 1,500 documented incidents recorded over the last 45 years. Previous research studies have shown that attempting to extricate a full-size pulling test dummy from a grain mass requires a substantial amount of tensile or pull force - e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!