Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
CRISPR-Cas9-based genome editing technologies, such as base editing, have the potential for clinical translation, but delivering nucleic acids into target cells is a major obstacle. Viral vectors are widely used but come with safety concerns, while current non-viral methods are limited by low transfection efficiency. Here we describe a new method to deliver CRISPR-Cas9 base editing vectors to the mouse liver using focused ultrasound targeted microbubble destruction (FUTMD). We demonstrate, using the example of cytosine base editing of the gene, that FUTMD-mediated delivery of cytosine base editing vectors can introduce stop codons (up to ∼2.5% on-target editing) in mouse liver cells . However, base editing specificity is less than one might hope with these DNA constructs. Our findings suggest that FUTMD-based gene editing tools can be rapidly and transiently deployed to specific organs and sites, providing a powerful platform for the development of non-viral genome editing therapies. Non-viral delivery also reveals greater off-target base exchange than .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10468349 | PMC |
http://dx.doi.org/10.1016/j.omtn.2023.07.032 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!