Extracellular vesicles (EVs) are nanoscale lipid bilayer particles secreted by cells. EVs may carry markers of the tissue of origin and its disease state which makes them incredibly promising for disease diagnosis and surveillance. While the armamentarium of EV analysis technologies is rapidly expanding, there remains a strong need for multiparametric analysis with single EV resolution. Nanoprojectile (NP) secondary ion mass spectrometry (NP-SIMS) relies on bombarding a substrate of interest with individual gold NPs resolved in time and space. Each projectile creates an impact crater of 10-20 nm in diameter while molecules emitted from each impact are mass analyzed and recorded as individual mass spectra. We demonstrate the utility of NP-SIMS for analysis of single EVs derived from normal liver cells (hepatocytes) and liver cancer cells. EVs were captured on antibody (Ab)-functionalized gold substrate then labeled with Abs carrying lanthanide (Ln) MS tags (Ab@Ln). These tags targeted four markers selected for identifying all EVs, and specific to hepatocytes or liver cancer. NP-SIMS was used to detect Ab@Ln-tags co-localized on the same EV and to construct scatter plots of surface marker expression for thousands of EVs with the capability of categorizing individual EVs. Additionally, NP-SIMS revealed information about the chemical nano-environment where targeted moieties co-localized. Our approach allowed analysis of population heterogeneity with single EV resolution and distinguishing between hepatocyte and liver cancer EVs based on surface marker expression. NP-SIMS holds considerable promise for multiplexed analysis of single EVs and may become a valuable tool for identifying and validating EV biomarkers of cancer and other diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10473594 | PMC |
http://dx.doi.org/10.1101/2023.08.21.554053 | DOI Listing |
J Phys Chem Lett
January 2025
State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
The Ni-N(His) coordination bond, formed between the nickel ion and histidine residues, is essential for recombinant protein purification, especially in Ni-NTA-based systems for selectively binding polyhistidine-tagged (Histag) proteins. While previous studies have explored its bond strength in a synthetic Ni-NTA-Histag system, the influence of the surrounding protein structure remains less understood. In this study, we used atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS) to quantify the Ni-N(His) bond strength in calprotectin, a biologically relevant protein system.
View Article and Find Full Text PDFInt J Surg
January 2025
Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Background: Microsurgery demands an intensive period of skill acquisition due to its inherent complexity. The development and implementation of innovative training methods are essential for enhancing microsurgical outcomes. This study aimed to evaluate the impact of a simulation training program on the clinical results of fingertip replantation surgeries.
View Article and Find Full Text PDFInt J Surg
January 2025
Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal diseases. Although several chemotherapy regimens have been developed over the past decades, few targeted therapies have shown a significant improvement in overall survival, partly due to the identification of PDAC as a single disease.
Methods: Combining metabolomic analysis and immunohistochemistry staining with Oil Red O staining, analysis for the oxygen consumption rate and extracellular acidification rate, we stratified pancreatic cancer cells into two subtypes.
Int J Surg
January 2025
Carcinoma Department of Traditional Chinese Medicine, Dianjiang People's Hospital of Chongqing, Chongqing, PR China.
The widespread adoption of high-resolution computed tomography (CT) screening has led to increased detection of small pulmonary nodules, necessitating accurate localization techniques for surgical resection. This review examines the evolution, efficacy, and safety of various localization methods for small pulmonary nodules. Studies focusing on localization techniques for pulmonary nodules ≤30 mm in diameter were included, with emphasis on technical success rates and complication profiles.
View Article and Find Full Text PDFACS Sens
January 2025
Department of Engineering Physics, McMaster University, 1280 Main Street West, L8S 4L8 Hamilton, Ontario, Canada.
Current approaches for classifying biosensor data in diagnostics rely on fixed decision thresholds based on receiver operating characteristic (ROC) curves, which can be limited in accuracy for complex and variable signals. To address these limitations, we developed a framework that facilitates the application of machine learning (ML) to diagnostic data for the binary classification of clinical samples, when using real-time electrochemical measurements. The framework was applied to a real-time multimeric aptamer assay (RT-MAp) that captures single-frequency (12.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!