Low soil available phosphorus level reduces cotton fiber length via osmoregulation.

Front Plant Sci

State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China.

Published: August 2023

Introduction: Phosphorus (P) deficiency hinders cotton ( L.) growth and development, seriously affecting lint yield and fiber quality. However, it is still unclear how P fertilizer affects fiber length.

Methods: Therefore, a two-year (2019-2020) pool-culture experiment was conducted using the split-plot design, with two cotton cultivars (CCRI-79; low-P tolerant and SCRC-28; low-P sensitive) as the main plot. Three soil available phosphorus (AP) contents (P: 3 ± 0.5, P: 6 ± 0.5, and P (control) with 15 ± 0.5 mg kg) were applied to the plots, as the subplot, to investigate the impact of soil AP content on cotton fiber elongation and length.

Results: Low soil AP (P and P) decreased the contents of the osmotically active solutes in the cotton fibers, including potassium ions (K), malate, soluble sugar, and sucrose, by 2.2-10.2%, 14.4-47.3%, 8.7-24.5%, and 10.1-23.4%, respectively, inhibiting the vacuoles from facilitating fiber elongation through osmoregulation. Moreover, soil AP deficiency also reduced the activities of enzymes participated in fiber elongation (plasma membrane H-ATPase (PM-H-ATPase), vacuole membrane H-ATPase (V-H-ATPase), vacuole membrane H-translocating inorganic pyrophosphatase (V-H-PPase), and phosphoenolpyruvate carboxylase (PEPC)). The PM-H-ATPase, V-H-ATPase, V-H-PPase, and PEPC were reduced by 8.4-33.0%, 7.0-33.8%, 14.1-38.4%, and 16.9-40.2%, respectively, inhibiting the transmembrane transport of the osmotically active solutes and acidified conditions for fiber cell wall, thus limiting the fiber elongation. Similarly, soil AP deficiency reduced the fiber length by 0.6-3.0 mm, mainly due to the 3.8-16.3% reduction of the maximum velocity of fiber elongation (V). Additionally, the upper fruiting branch positions (FB) had higher V and longer fiber lengths under low soil AP.

Discussion: Cotton fibers with higher malate content and V-H-ATPase and V-H-PPase activities yielded longer fibers. And the malate and soluble sugar contents and V-H-ATPase and PEPC activities in the SCRC-28's fiber were more sensitive to soil AP deficiency in contrast to those of CCRI-79, possibly explaining the SCRC-28 fiber length sensitivity to low soil AP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10471804PMC
http://dx.doi.org/10.3389/fpls.2023.1254103DOI Listing

Publication Analysis

Top Keywords

fiber elongation
20
low soil
16
fiber
13
fiber length
12
soil deficiency
12
soil phosphorus
8
cotton fiber
8
soil
8
osmotically active
8
active solutes
8

Similar Publications

Kinetic and isothermal study of dye absorption using pre-treated natural fabrics using polyamine compounds.

Sci Rep

January 2025

Finishing of Cellulose-based Fibres Department, National Research Centre, Pretreatment and Textile Research and Technology Institute, 33 El-Behouth St. (former El-Tahrir str.), Dokki, P.O. 12622, Giza, Egypt.

The study examined the use of cationic polymers (Polyethyleneimine and chitosan) in treating fabrics like cotton, wool, and cotton/wool (70/30) to improve their dyeability and printability. The study examined factors such as dye concentration, time, and temperature for the dyeing process. Results showed that all dyed and printed fabrics treated with polyethyleneimine and chitosan increased color strength by significant percentages.

View Article and Find Full Text PDF

Human adenovirus type 36 (HAdV-D36) has been putatively linked to obesity in animals and has been associated with obesity in humans in some but not all studies. Despite extensive epidemiological research there is limited information about its receptor profile. We investigated the receptor portfolio of HAdV-D36 using a combined structural biology and virology approach.

View Article and Find Full Text PDF

A novel DES-enhanced sodium alginate-based conductive organohydrogel fiber for high-performance wearable sensors.

Int J Biol Macromol

January 2025

College of Textile and Clothing Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123, China; Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), 215123, China; State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China. Electronic address:

Conductive organohydrogel fibers based on sodium alginate (SA) exhibit remarkable flexibility and electrical conductivity, making them ideal candidates for conformal skin adhesion and real-time monitoring of human activity signals. However, traditional conductive hydrogels often suffer from issues such as uneven distribution of conductive fillers, and achieving the integration of high mechanical strength, stretchability, and transparency using environmentally friendly methods remains a significant challenge. In this study, a novel and sustainable strategy was developed to fabricate dual-network organohydrogel fibers using sodium alginate as the primary material.

View Article and Find Full Text PDF

The World Health Organization has confirmed that asbestos fibres are carcinogenic, claiming that asbestos-related diseases should be eradicated worldwide. Actinolite, amosite, anthophyllite, chrysotile, crocidolite, and tremolite are regulated asbestiform mineral phases. However, in nature, asbestos minerals occur either in a fibrous and asbestiform (original morphology characterized by high length-to-width ratio and provided of high tensile strength and flexibility) or fibrous but not asbestiform appearance.

View Article and Find Full Text PDF

Water-regulated viscosity-plasticity phase transitions in a peptide self-assembled muscle-like hydrogel.

Nat Commun

January 2025

Department of Chemistry, School of Science, Westlake University, Hangzhou, Zhejiang Province, China.

The self-assembly of small molecules through non-covalent interactions is an emerging and promising strategy for building dynamic, stable, and large-scale structures. One remaining challenge is making the non-covalent interactions occur in the ideal positions to generate strength comparable to that of covalent bonds. This work shows that small molecule YAWF can self-assemble into a liquid-crystal hydrogel (LCH), the mechanical properties of which could be controlled by water.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!