Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We have applied our advanced computational and experimental methodologies to investigate the complex structure and binding mechanism of a modified Wilms' Tumor 1 (mWT1) protein epitope to the understudied Asian-dominant allele HLA-A*24:02 (HLA-A24) in aqueous solution. We have applied our developed multicanonical molecular dynamics (McMD)-based dynamic docking method to analyze the binding pathway and mechanism, which we verified by comparing the highest probability structures from simulation with our experimentally solved x-ray crystal structure. Subsequent path sampling MD simulations elucidated the atomic details of the binding process and indicated that first an encounter complex is formed between the N-terminal's positive charge of the 9-residue mWT1 fragment peptide and a cluster of negative residues on the surface of HLA-A24, with the major histocompatibility complex (MHC) molecule preferring a predominantly closed conformation. The peptide first binds to this closed MHC conformation, forming an encounter complex, after which the binding site opens due to increased entropy of the binding site, allowing the peptide to bind to form the native complex structure. Further sequence and structure analyses also suggest that although the peptide loading complex would help with stabilizing the MHC molecule, the binding depends in a large part on the intrinsic affinity between the MHC molecule and the antigen peptide. Finally, our computational tools and analyses can be of great benefit to study the binding mechanism of different MHC types to their antigens, where it could also be useful in the development of higher affinity variant peptides and for personalized medicine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10510467 | PMC |
http://dx.doi.org/10.1002/pro.4775 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!