Gain-of-function allele of HPY1 coordinates source and sink to increase grain yield in rice.

Sci Bull (Beijing)

State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan 430072, China; Hubei Hongshan Laboratory, Wuhan 430070, China. Electronic address:

Published: October 2023

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scib.2023.08.033DOI Listing

Publication Analysis

Top Keywords

gain-of-function allele
4
allele hpy1
4
hpy1 coordinates
4
coordinates source
4
source sink
4
sink increase
4
increase grain
4
grain yield
4
yield rice
4
gain-of-function
1

Similar Publications

Alleviating the Effects of Short QT Syndrome Type 3 by Allele-Specific Suppression of the Mutant Allele.

Int J Mol Sci

December 2024

Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.

Short QT syndrome type 3 (SQTS3 or SQT3), which is associated with life-threatening cardiac arrhythmias, is caused by heterozygous gain-of-function mutations in the gene. This gene encodes the pore-forming α-subunit of the ion channel that carries the cardiac inward rectifier potassium current (I). These gain-of-function mutations either increase the amplitude of I or attenuate its rectification.

View Article and Find Full Text PDF

ZIC1 is a context-dependent medulloblastoma driver in the rhombic lip.

Nat Genet

January 2025

Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.

Transcription factors are frequent cancer driver genes, exhibiting noted specificity based on the precise cell of origin. We demonstrate that ZIC1 exhibits loss-of-function (LOF) somatic events in group 4 (G4) medulloblastoma through recurrent point mutations, subchromosomal deletions and mono-allelic epigenetic repression (60% of G4 medulloblastoma). In contrast, highly similar SHH medulloblastoma exhibits distinct and diametrically opposed gain-of-function mutations and copy number gains (20% of SHH medulloblastoma).

View Article and Find Full Text PDF

In vivo adenine base editing ameliorates Rho-associated autosomal dominant retinitis pigmentosa.

J Genet Genomics

December 2024

MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China; Key Laboratory of Reproductive Medicine of Guangdong Province, the First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China. Electronic address:

Mutations in the Rhodopsin (RHO) gene are the main cause of autosomal dominant retinitis pigmentosa (adRP), 84% of which are pathogenic gain-of-function point mutations. Treatment strategies for adRP typically involve silencing or ablating the pathogenic allele, while normal RHO protein replacement has no meaningful therapeutic benefit. Here, we present an adenine base editor (ABE)-mediated therapeutic approach for adRP caused by RHO point mutations in vivo.

View Article and Find Full Text PDF

The bHLH transcription factor gene EGL3 accounts for the natural diversity in Arabidopsis fruit trichome pattern and morphology.

Plant Physiol

December 2024

Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain.

The number and distribution of trichomes, i.e., the trichome pattern, in different plant organs shows a conspicuous inter- and intraspecific diversity across Angiosperms that is presumably involved in adaptation to numerous environmental factors.

View Article and Find Full Text PDF

Dihydropyrimidine dehydrogenase (DPD, encoded by the gene) is the rate-limiting enzyme for the detoxification of fluoropyrimidines (FLs). Rs4294451 is a regulatory polymorphism that has recently been functionally characterized and associated with increased DPD expression in the liver. The aim of the present study was to test the clinical implications of being a carrier of rs4294451 in a cohort of 645 FL-treated colorectal cancer patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!